yolov6_pred.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. # -------------------- Detection Pred Layer --------------------
  5. ## Single-level pred layer
  6. class DetPredLayer(nn.Module):
  7. def __init__(self,
  8. cls_dim :int,
  9. reg_dim :int,
  10. stride :int,
  11. num_classes :int,
  12. ):
  13. super().__init__()
  14. # --------- Basic Parameters ----------
  15. self.stride = stride
  16. self.cls_dim = cls_dim
  17. self.reg_dim = reg_dim
  18. self.num_classes = num_classes
  19. # --------- Network Parameters ----------
  20. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes, kernel_size=1)
  21. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  22. self.init_bias()
  23. def init_bias(self):
  24. # Init bias
  25. init_prob = 0.01
  26. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  27. # cls pred
  28. b = self.cls_pred.bias.view(1, -1)
  29. b.data.fill_(bias_value.item())
  30. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  31. # reg pred
  32. b = self.reg_pred.bias.view(-1, )
  33. b.data.fill_(1.0)
  34. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  35. def generate_anchors(self, fmp_size):
  36. """
  37. fmp_size: (List) [H, W]
  38. """
  39. fmp_h, fmp_w = fmp_size
  40. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  41. # [H, W, 2] -> [HW, 2]
  42. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  43. anchors = anchors + 0.5
  44. anchors = anchors * self.stride
  45. return anchors
  46. def forward(self, cls_feat, reg_feat):
  47. # 预测层
  48. cls_pred = self.cls_pred(cls_feat)
  49. reg_pred = self.reg_pred(reg_feat)
  50. # 生成网格坐标
  51. B, _, H, W = cls_pred.size()
  52. fmp_size = [H, W]
  53. anchors = self.generate_anchors(fmp_size)
  54. anchors = anchors.to(cls_pred.device)
  55. # 对 pred 的size做一些view调整,便于后续的处理
  56. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  57. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  58. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  59. # 解算边界框坐标
  60. cxcy_pred = reg_pred[..., :2] * self.stride + anchors
  61. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  62. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  63. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  64. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  65. # output dict
  66. outputs = {"pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  67. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  68. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  69. "anchors" : anchors, # (torch.Tensor) [M, 2]
  70. "fmp_size": fmp_size,
  71. "stride" : self.stride, # (Int)
  72. }
  73. return outputs
  74. ## Multi-level pred layer
  75. class Yolov6DetPredLayer(nn.Module):
  76. def __init__(self, cfg, in_dims):
  77. super().__init__()
  78. # --------- Basic Parameters ----------
  79. self.cfg = cfg
  80. # ----------- Network Parameters -----------
  81. ## pred layers
  82. self.multi_level_preds = nn.ModuleList(
  83. [DetPredLayer(cls_dim = in_dims[level],
  84. reg_dim = in_dims[level],
  85. stride = cfg.out_stride[level],
  86. num_classes = cfg.num_classes,)
  87. for level in range(cfg.num_levels)
  88. ])
  89. def forward(self, cls_feats, reg_feats):
  90. all_anchors = []
  91. all_fmp_sizes = []
  92. all_cls_preds = []
  93. all_reg_preds = []
  94. all_box_preds = []
  95. for level in range(self.cfg.num_levels):
  96. # -------------- Single-level prediction --------------
  97. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  98. # collect results
  99. all_cls_preds.append(outputs["pred_cls"])
  100. all_reg_preds.append(outputs["pred_reg"])
  101. all_box_preds.append(outputs["pred_box"])
  102. all_fmp_sizes.append(outputs["fmp_size"])
  103. all_anchors.append(outputs["anchors"])
  104. # output dict
  105. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  106. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  107. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  108. "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
  109. "anchors": all_anchors, # List(Tensor) [M, 2]
  110. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  111. }
  112. return outputs