yolov6.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolov6_backbone import Yolov6Backbone
  6. from .yolov6_neck import SPPF
  7. from .yolov6_pafpn import Yolov6PaFPN
  8. from .yolov6_head import Yolov6DetHead
  9. from .yolov6_pred import Yolov6DetPredLayer
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # YOLOv6
  13. class Yolov6(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. is_val = False,
  17. ) -> None:
  18. super(Yolov6, self).__init__()
  19. # ---------------------- Basic setting ----------------------
  20. self.cfg = cfg
  21. self.num_classes = cfg.num_classes
  22. ## Post-process parameters
  23. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  24. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  25. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  26. self.no_multi_labels = False if is_val else True
  27. # ---------------------- Network Parameters ----------------------
  28. ## Backbone
  29. self.backbone = Yolov6Backbone(cfg)
  30. self.pyramid_feat_dims = self.backbone.feat_dims[-3:]
  31. ## Neck: SPP
  32. self.neck = SPPF(cfg, self.pyramid_feat_dims[-1], self.pyramid_feat_dims[-1])
  33. self.pyramid_feat_dims[-1] = self.neck.out_dim
  34. ## Neck: FPN
  35. self.fpn = Yolov6PaFPN(cfg, self.pyramid_feat_dims)
  36. ## Head
  37. self.head = Yolov6DetHead(cfg, self.fpn.out_dims)
  38. ## Pred
  39. self.pred = Yolov6DetPredLayer(cfg, self.fpn.out_dims)
  40. self.switch_deploy()
  41. def switch_deploy(self,):
  42. for m in self.modules():
  43. if hasattr(m, "switch_to_deploy"):
  44. m.switch_to_deploy()
  45. def post_process(self, cls_preds, box_preds):
  46. """
  47. We process predictions at each scale hierarchically
  48. Input:
  49. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  50. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  51. Output:
  52. bboxes: np.array -> [N, 4]
  53. scores: np.array -> [N,]
  54. labels: np.array -> [N,]
  55. """
  56. all_scores = []
  57. all_labels = []
  58. all_bboxes = []
  59. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  60. cls_pred_i = cls_pred_i[0]
  61. box_pred_i = box_pred_i[0]
  62. if self.no_multi_labels:
  63. # [M,]
  64. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  65. # Keep top k top scoring indices only.
  66. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  67. # topk candidates
  68. predicted_prob, topk_idxs = scores.sort(descending=True)
  69. topk_scores = predicted_prob[:num_topk]
  70. topk_idxs = topk_idxs[:num_topk]
  71. # filter out the proposals with low confidence score
  72. keep_idxs = topk_scores > self.conf_thresh
  73. scores = topk_scores[keep_idxs]
  74. topk_idxs = topk_idxs[keep_idxs]
  75. labels = labels[topk_idxs]
  76. bboxes = box_pred_i[topk_idxs]
  77. else:
  78. # [M, C] -> [MC,]
  79. scores_i = cls_pred_i.sigmoid().flatten()
  80. # Keep top k top scoring indices only.
  81. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  82. # torch.sort is actually faster than .topk (at least on GPUs)
  83. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  84. topk_scores = predicted_prob[:num_topk]
  85. topk_idxs = topk_idxs[:num_topk]
  86. # filter out the proposals with low confidence score
  87. keep_idxs = topk_scores > self.conf_thresh
  88. scores = topk_scores[keep_idxs]
  89. topk_idxs = topk_idxs[keep_idxs]
  90. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  91. labels = topk_idxs % self.num_classes
  92. bboxes = box_pred_i[anchor_idxs]
  93. all_scores.append(scores)
  94. all_labels.append(labels)
  95. all_bboxes.append(bboxes)
  96. scores = torch.cat(all_scores, dim=0)
  97. labels = torch.cat(all_labels, dim=0)
  98. bboxes = torch.cat(all_bboxes, dim=0)
  99. # to cpu & numpy
  100. scores = scores.cpu().numpy()
  101. labels = labels.cpu().numpy()
  102. bboxes = bboxes.cpu().numpy()
  103. # nms
  104. scores, labels, bboxes = multiclass_nms(
  105. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  106. return bboxes, scores, labels
  107. def forward(self, x):
  108. # ---------------- Backbone ----------------
  109. pyramid_feats = self.backbone(x)
  110. # ---------------- Neck: SPP ----------------
  111. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  112. # ---------------- Neck: PaFPN ----------------
  113. pyramid_feats = self.fpn(pyramid_feats)
  114. # ---------------- Heads ----------------
  115. cls_feats, reg_feats = self.head(pyramid_feats)
  116. # ---------------- Preds ----------------
  117. outputs = self.pred(cls_feats, reg_feats)
  118. outputs['image_size'] = [x.shape[2], x.shape[3]]
  119. if not self.training:
  120. all_cls_preds = outputs['pred_cls']
  121. all_box_preds = outputs['pred_box']
  122. # post process
  123. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  124. outputs = {
  125. "scores": scores,
  126. "labels": labels,
  127. "bboxes": bboxes
  128. }
  129. return outputs