gelan_pred.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. # Single-level pred layer
  6. class SingleLevelPredLayer(nn.Module):
  7. def __init__(self,
  8. cls_dim :int = 256,
  9. reg_dim :int = 256,
  10. stride :int = 32,
  11. reg_max :int = 16,
  12. num_classes :int = 80,
  13. num_coords :int = 4):
  14. super().__init__()
  15. # --------- Basic Parameters ----------
  16. self.stride = stride
  17. self.cls_dim = cls_dim
  18. self.reg_dim = reg_dim
  19. self.reg_max = reg_max
  20. self.num_classes = num_classes
  21. self.num_coords = num_coords
  22. # --------- Network Parameters ----------
  23. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  24. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1, groups=4)
  25. self.init_bias()
  26. def init_bias(self):
  27. # cls pred bias
  28. b = self.cls_pred.bias.view(1, -1)
  29. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  30. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  31. # reg pred bias
  32. b = self.reg_pred.bias.view(-1, )
  33. b.data.fill_(1.0)
  34. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  35. def generate_anchors(self, fmp_size):
  36. """
  37. fmp_size: (List) [H, W]
  38. """
  39. # generate grid cells
  40. fmp_h, fmp_w = fmp_size
  41. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  42. # [H, W, 2] -> [HW, 2]
  43. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  44. anchors += 0.5 # add center offset
  45. anchors *= self.stride
  46. return anchors
  47. def forward(self, cls_feat, reg_feat):
  48. # pred
  49. cls_pred = self.cls_pred(cls_feat)
  50. reg_pred = self.reg_pred(reg_feat)
  51. # generate anchor boxes: [M, 4]
  52. B, _, H, W = cls_pred.size()
  53. fmp_size = [H, W]
  54. anchors = self.generate_anchors(fmp_size)
  55. anchors = anchors.to(cls_pred.device)
  56. # stride tensor: [M, 1]
  57. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  58. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  59. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  60. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  61. # output dict
  62. outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
  63. "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
  64. "anchors": anchors, # List(Tensor) [M, 2]
  65. "strides": self.stride, # List(Int) = [8, 16, 32]
  66. "stride_tensor": stride_tensor # List(Tensor) [M, 1]
  67. }
  68. return outputs
  69. # Multi-level pred layer
  70. class GElanPredLayer(nn.Module):
  71. def __init__(self,
  72. cfg,
  73. cls_dim,
  74. reg_dim,
  75. ):
  76. super().__init__()
  77. # --------- Basic Parameters ----------
  78. self.cfg = cfg
  79. self.cls_dim = cls_dim
  80. self.reg_dim = reg_dim
  81. # ----------- Network Parameters -----------
  82. ## pred layers
  83. self.multi_level_preds = nn.ModuleList(
  84. [SingleLevelPredLayer(cls_dim = cls_dim,
  85. reg_dim = reg_dim,
  86. stride = cfg.out_stride[level],
  87. reg_max = cfg.reg_max,
  88. num_classes = cfg.num_classes,
  89. num_coords = 4 * cfg.reg_max)
  90. for level in range(cfg.num_levels)
  91. ])
  92. ## proj conv
  93. proj_init = torch.arange(cfg.reg_max, dtype=torch.float)
  94. self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
  95. self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False)
  96. def forward(self, cls_feats, reg_feats):
  97. all_anchors = []
  98. all_strides = []
  99. all_cls_preds = []
  100. all_reg_preds = []
  101. all_box_preds = []
  102. for level in range(self.cfg.num_levels):
  103. # -------------- Single-level prediction --------------
  104. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  105. # -------------- Decode bbox --------------
  106. B, M = outputs["pred_reg"].shape[:2]
  107. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
  108. delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.cfg.reg_max])
  109. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  110. delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
  111. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  112. delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
  113. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  114. delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  115. ## tlbr -> xyxy
  116. x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.cfg.out_stride[level]
  117. x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.cfg.out_stride[level]
  118. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  119. # collect results
  120. all_cls_preds.append(outputs["pred_cls"])
  121. all_reg_preds.append(outputs["pred_reg"])
  122. all_box_preds.append(box_pred)
  123. all_anchors.append(outputs["anchors"])
  124. all_strides.append(outputs["stride_tensor"])
  125. # output dict
  126. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  127. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  128. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  129. "anchors": all_anchors, # List(Tensor) [M, 2]
  130. "stride_tensor": all_strides, # List(Tensor) [M, 1]
  131. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  132. }
  133. return outputs