yolov1_pred.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. import torch
  2. import torch.nn as nn
  3. # -------------------- Detection Pred Layer --------------------
  4. ## Single-level pred layer
  5. class Yolov1DetPredLayer(nn.Module):
  6. def __init__(self,
  7. cfg,
  8. num_classes):
  9. super().__init__()
  10. # --------- Basic Parameters ----------
  11. self.stride = cfg.out_stride
  12. self.cls_dim = cfg.head_dim
  13. self.reg_dim = cfg.head_dim
  14. # --------- Network Parameters ----------
  15. self.obj_pred = nn.Conv2d(self.cls_dim, 1, kernel_size=1)
  16. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes, kernel_size=1)
  17. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  18. self.init_bias()
  19. def init_bias(self):
  20. # Init bias
  21. init_prob = 0.01
  22. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  23. # obj pred
  24. b = self.obj_pred.bias.view(1, -1)
  25. b.data.fill_(bias_value.item())
  26. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  27. # cls pred
  28. b = self.cls_pred.bias.view(1, -1)
  29. b.data.fill_(bias_value.item())
  30. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  31. # reg pred
  32. b = self.reg_pred.bias.view(-1, )
  33. b.data.fill_(1.0)
  34. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  35. def generate_anchors(self, fmp_size):
  36. """
  37. fmp_size: (List) [H, W]
  38. """
  39. # 特征图的宽和高
  40. fmp_h, fmp_w = fmp_size
  41. # 生成网格的x坐标和y坐标
  42. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  43. # 将xy两部分的坐标拼起来:[H, W, 2]
  44. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float()
  45. # [H, W, 2] -> [HW, 2]
  46. anchors = anchors.view(-1, 2)
  47. return anchors
  48. def forward(self, cls_feat, reg_feat):
  49. # 预测层
  50. obj_pred = self.obj_pred(cls_feat)
  51. cls_pred = self.cls_pred(cls_feat)
  52. reg_pred = self.reg_pred(reg_feat)
  53. # 生成网格坐标
  54. B, _, H, W = cls_pred.size()
  55. fmp_size = [H, W]
  56. anchors = self.generate_anchors(fmp_size)
  57. anchors = anchors.to(cls_pred.device)
  58. # 对 pred 的size做一些view调整,便于后续的处理
  59. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  60. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  61. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  62. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  63. # 解算边界框坐标
  64. cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  65. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  66. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  67. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  68. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  69. # output dict
  70. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  71. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  72. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  73. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  74. "anchors" : anchors, # (torch.Tensor) [M, 2]
  75. "fmp_size": fmp_size,
  76. "stride" : self.stride, # (Int)
  77. }
  78. return outputs