gelan_neck.py 2.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. import torch
  2. import torch.nn as nn
  3. from .gelan_basic import BasicConv
  4. # SPPF (from yolov5)
  5. class SPPF(nn.Module):
  6. """
  7. This code referenced to https://github.com/ultralytics/yolov5
  8. """
  9. def __init__(self, cfg, in_dim, out_dim):
  10. super().__init__()
  11. ## ----------- Basic Parameters -----------
  12. inter_dim = round(in_dim * cfg.neck_expand_ratio)
  13. self.out_dim = out_dim
  14. ## ----------- Network Parameters -----------
  15. self.cv1 = BasicConv(in_dim, inter_dim,
  16. kernel_size=1, padding=0, stride=1,
  17. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  18. self.cv2 = BasicConv(inter_dim * 4, out_dim,
  19. kernel_size=1, padding=0, stride=1,
  20. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  21. self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size,
  22. stride=1,
  23. padding=cfg.spp_pooling_size // 2)
  24. # Initialize all layers
  25. self.init_weights()
  26. def init_weights(self):
  27. """Initialize the parameters."""
  28. for m in self.modules():
  29. if isinstance(m, torch.nn.Conv2d):
  30. # In order to be consistent with the source code,
  31. # reset the Conv2d initialization parameters
  32. m.reset_parameters()
  33. def forward(self, x):
  34. x = self.cv1(x)
  35. y1 = self.m(x)
  36. y2 = self.m(y1)
  37. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
  38. # SPP-ELAN (from yolov9)
  39. class SPPElan(nn.Module):
  40. def __init__(self, cfg, in_dim):
  41. """SPPElan looks like the SPPF."""
  42. super().__init__()
  43. ## ----------- Basic Parameters -----------
  44. self.in_dim = in_dim
  45. self.inter_dim = cfg.spp_inter_dim
  46. self.out_dim = cfg.spp_out_dim
  47. ## ----------- Network Parameters -----------
  48. self.conv_layer_1 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  49. self.conv_layer_2 = BasicConv(self.inter_dim * 4, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  50. self.pool_layer = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size, stride=1, padding=cfg.spp_pooling_size // 2)
  51. # Initialize all layers
  52. self.init_weights()
  53. def init_weights(self):
  54. """Initialize the parameters."""
  55. for m in self.modules():
  56. if isinstance(m, torch.nn.Conv2d):
  57. # In order to be consistent with the source code,
  58. # reset the Conv2d initialization parameters
  59. m.reset_parameters()
  60. def forward(self, x):
  61. y = [self.conv_layer_1(x)]
  62. y.extend(self.pool_layer(y[-1]) for _ in range(3))
  63. return self.conv_layer_2(torch.cat(y, 1))