| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- import torch
- import torch.nn as nn
- from .gelan_basic import BasicConv
- # SPPF (from yolov5)
- class SPPF(nn.Module):
- """
- This code referenced to https://github.com/ultralytics/yolov5
- """
- def __init__(self, cfg, in_dim, out_dim):
- super().__init__()
- ## ----------- Basic Parameters -----------
- inter_dim = round(in_dim * cfg.neck_expand_ratio)
- self.out_dim = out_dim
- ## ----------- Network Parameters -----------
- self.cv1 = BasicConv(in_dim, inter_dim,
- kernel_size=1, padding=0, stride=1,
- act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.cv2 = BasicConv(inter_dim * 4, out_dim,
- kernel_size=1, padding=0, stride=1,
- act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size,
- stride=1,
- padding=cfg.spp_pooling_size // 2)
- # Initialize all layers
- self.init_weights()
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, x):
- x = self.cv1(x)
- y1 = self.m(x)
- y2 = self.m(y1)
- return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
- # SPP-ELAN (from yolov9)
- class SPPElan(nn.Module):
- def __init__(self, cfg, in_dim):
- """SPPElan looks like the SPPF."""
- super().__init__()
- ## ----------- Basic Parameters -----------
- self.in_dim = in_dim
- self.inter_dim = cfg.spp_inter_dim
- self.out_dim = cfg.spp_out_dim
- ## ----------- Network Parameters -----------
- self.conv_layer_1 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.conv_layer_2 = BasicConv(self.inter_dim * 4, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.pool_layer = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size, stride=1, padding=cfg.spp_pooling_size // 2)
- # Initialize all layers
- self.init_weights()
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, x):
- y = [self.conv_layer_1(x)]
- y.extend(self.pool_layer(y[-1]) for _ in range(3))
-
- return self.conv_layer_2(torch.cat(y, 1))
-
|