yolov8_config.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. # yolo Config
  2. def build_yolov8_config(args):
  3. if args.model == 'yolov8_s':
  4. return Yolov8SConfig()
  5. else:
  6. raise NotImplementedError("No config for model: {}".format(args.model))
  7. # YOLOv8-Base config
  8. class Yolov8BaseConfig(object):
  9. def __init__(self) -> None:
  10. # ---------------- Model config ----------------
  11. self.width = 1.0
  12. self.depth = 1.0
  13. self.ratio = 1.0
  14. self.reg_max = 16
  15. self.out_stride = [8, 16, 32]
  16. self.max_stride = 32
  17. self.num_levels = 3
  18. self.scale = "b"
  19. ## Backbone
  20. self.bk_act = 'silu'
  21. self.bk_norm = 'BN'
  22. self.bk_depthwise = False
  23. self.use_pretrained = False
  24. ## Neck
  25. self.neck_act = 'silu'
  26. self.neck_norm = 'BN'
  27. self.neck_depthwise = False
  28. self.neck_expand_ratio = 0.5
  29. self.spp_pooling_size = 5
  30. ## FPN
  31. self.fpn_act = 'silu'
  32. self.fpn_norm = 'BN'
  33. self.fpn_depthwise = False
  34. ## Head
  35. self.head_act = 'silu'
  36. self.head_norm = 'BN'
  37. self.head_depthwise = False
  38. self.num_cls_head = 2
  39. self.num_reg_head = 2
  40. # ---------------- Post-process config ----------------
  41. ## Post process
  42. self.val_topk = 1000
  43. self.val_conf_thresh = 0.001
  44. self.val_nms_thresh = 0.7
  45. self.test_topk = 100
  46. self.test_conf_thresh = 0.2
  47. self.test_nms_thresh = 0.5
  48. # ---------------- Assignment config ----------------
  49. ## Matcher
  50. self.tal_topk_candidates = 10
  51. self.tal_alpha = 0.5
  52. self.tal_beta = 6.0
  53. ## Loss weight
  54. self.loss_cls = 0.5
  55. self.loss_box = 7.5
  56. self.loss_dfl = 1.5
  57. # ---------------- ModelEMA config ----------------
  58. self.use_ema = True
  59. self.ema_decay = 0.9998
  60. self.ema_tau = 2000
  61. # ---------------- Optimizer config ----------------
  62. self.trainer = 'yolo'
  63. self.optimizer = 'adamw'
  64. self.per_image_lr = 0.001 / 64
  65. self.base_lr = None # base_lr = per_image_lr * batch_size
  66. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  67. self.momentum = 0.9
  68. self.weight_decay = 0.05
  69. self.clip_max_norm = -1.
  70. self.warmup_bias_lr = 0.1
  71. self.warmup_momentum = 0.8
  72. # ---------------- Lr Scheduler config ----------------
  73. self.warmup_epoch = 3
  74. self.lr_scheduler = "cosine"
  75. self.max_epoch = 500
  76. self.eval_epoch = 10
  77. self.no_aug_epoch = 20
  78. # ---------------- Data process config ----------------
  79. self.aug_type = 'yolo'
  80. self.box_format = 'xyxy'
  81. self.normalize_coords = False
  82. self.mosaic_prob = 1.0
  83. self.mixup_prob = 0.15
  84. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  85. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  86. ## Pixel mean & std
  87. self.pixel_mean = [0., 0., 0.]
  88. self.pixel_std = [255., 255., 255.]
  89. ## Transforms
  90. self.train_img_size = 640
  91. self.test_img_size = 640
  92. self.use_ablu = True
  93. self.affine_params = {
  94. 'degrees': 0.0,
  95. 'translate': 0.2,
  96. 'scale': [0.1, 2.0],
  97. 'shear': 0.0,
  98. 'perspective': 0.0,
  99. 'hsv_h': 0.015,
  100. 'hsv_s': 0.7,
  101. 'hsv_v': 0.4,
  102. }
  103. def print_config(self):
  104. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  105. for k, v in config_dict.items():
  106. print("{} : {}".format(k, v))
  107. # YOLOv8-S
  108. class Yolov8SConfig(Yolov8BaseConfig):
  109. def __init__(self) -> None:
  110. super().__init__()
  111. # ---------------- Model config ----------------
  112. self.width = 0.50
  113. self.depth = 0.34
  114. self.ratio = 2.0
  115. self.scale = "s"
  116. # ---------------- Data process config ----------------
  117. self.mosaic_prob = 1.0
  118. self.mixup_prob = 0.1
  119. self.copy_paste = 0.5