| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- import numpy as np
- import torch
- import torch.nn as nn
- from typing import List
- # --------------------- Basic modules ---------------------
- class ConvModule(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size=1, # kernel size
- padding=0, # padding
- stride=1, # padding
- groups=1, # groups
- ):
- super(ConvModule, self).__init__()
- self.conv = nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)
- self.norm = nn.BatchNorm2d(out_dim)
- self.act = nn.SiLU(inplace=True)
- def forward(self, x):
- return self.act(self.norm(self.conv(x)))
- # --------------------- GELAN modules (from yolov9) ---------------------
- class ADown(nn.Module):
- def __init__(self, in_dim, out_dim,):
- super().__init__()
- inter_dim = out_dim // 2
- self.conv_layer_1 = ConvModule(in_dim // 2, inter_dim, kernel_size=3, padding=1, stride=2)
- self.conv_layer_2 = ConvModule(in_dim // 2, inter_dim, kernel_size=1)
-
- def forward(self, x):
- x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
- x1,x2 = x.chunk(2, 1)
- x1 = self.conv_layer_1(x1)
- x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
- x2 = self.conv_layer_2(x2)
- return torch.cat((x1, x2), 1)
- class RepConvN(nn.Module):
- """RepConv is a basic rep-style block, including training and deploy status
- This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
- """
- def __init__(self, in_dim, out_dim, k=3, s=1, p=1,):
- super().__init__()
- assert k == 3 and p == 1
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.act = nn.SiLU(inplace=True)
- self.bn = None
- self.conv1 = ConvModule(in_dim, out_dim, kernel_size=k, padding=p, stride=s)
- self.conv2 = ConvModule(in_dim, out_dim, kernel_size=1, padding=(p - k // 2), stride=s)
- def forward(self, x):
- """Forward process"""
- if hasattr(self, 'conv'):
- return self.forward_fuse(x)
- else:
- id_out = 0 if self.bn is None else self.bn(x)
- return self.act(self.conv1(x) + self.conv2(x) + id_out)
- def forward_fuse(self, x):
- """Forward process"""
- return self.act(self.conv(x))
- def get_equivalent_kernel_bias(self):
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
- kernelid, biasid = self._fuse_bn_tensor(self.bn)
- return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
- def _avg_to_3x3_tensor(self, avgp):
- channels = self.in_dim
- groups = self.g
- kernel_size = avgp.kernel_size
- input_dim = channels // groups
- k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
- k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
- return k
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
- if kernel1x1 is None:
- return 0
- else:
- return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
- def _fuse_bn_tensor(self, branch):
- if branch is None:
- return 0, 0
- if isinstance(branch, ConvModule):
- kernel = branch.conv.weight
- running_mean = branch.norm.running_mean
- running_var = branch.norm.running_var
- gamma = branch.norm.weight
- beta = branch.norm.bias
- eps = branch.norm.eps
- elif isinstance(branch, nn.BatchNorm2d):
- if not hasattr(self, 'id_tensor'):
- input_dim = self.in_dim // self.g
- kernel_value = np.zeros((self.in_dim, input_dim, 3, 3), dtype=np.float32)
- for i in range(self.in_dim):
- kernel_value[i, i % input_dim, 1, 1] = 1
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
- kernel = self.id_tensor
- running_mean = branch.running_mean
- running_var = branch.running_var
- gamma = branch.weight
- beta = branch.bias
- eps = branch.eps
- std = (running_var + eps).sqrt()
- t = (gamma / std).reshape(-1, 1, 1, 1)
- return kernel * t, beta - running_mean * gamma / std
- def fuse_convs(self):
- if hasattr(self, 'conv'):
- return
- kernel, bias = self.get_equivalent_kernel_bias()
- self.conv = nn.Conv2d(in_channels = self.conv1.conv.in_channels,
- out_channels = self.conv1.conv.out_channels,
- kernel_size = self.conv1.conv.kernel_size,
- stride = self.conv1.conv.stride,
- padding = self.conv1.conv.padding,
- dilation = self.conv1.conv.dilation,
- groups = self.conv1.conv.groups,
- bias = True).requires_grad_(False)
- self.conv.weight.data = kernel
- self.conv.bias.data = bias
- for para in self.parameters():
- para.detach_()
- self.__delattr__('conv1')
- self.__delattr__('conv2')
- if hasattr(self, 'nm'):
- self.__delattr__('nm')
- if hasattr(self, 'bn'):
- self.__delattr__('bn')
- if hasattr(self, 'id_tensor'):
- self.__delattr__('id_tensor')
- class RepNBottleneck(nn.Module):
- def __init__(self,
- in_dim: int,
- out_dim: int,
- shortcut: bool = True,
- kernel_size: List = (3, 3),
- expansion: float = 0.5,
- ):
- super().__init__()
- inter_dim = round(out_dim * expansion)
- self.conv_layer_1 = RepConvN(in_dim, inter_dim, kernel_size[0], p=kernel_size[0]//2, s=1)
- self.conv_layer_2 = ConvModule(inter_dim, out_dim, kernel_size[1], padding=kernel_size[1]//2, stride=1)
- self.add = shortcut and in_dim == out_dim
- def forward(self, x):
- h = self.conv_layer_2(self.conv_layer_1(x))
- return x + h if self.add else h
- class RepNCSP(nn.Module):
- def __init__(self,
- in_dim: int,
- out_dim: int,
- num_blocks: int = 1,
- shortcut: bool = True,
- expansion:float = 0.5,
- ):
- super().__init__()
- inter_dim = int(out_dim * expansion)
- self.conv_layer_1 = ConvModule(in_dim, inter_dim, kernel_size=1)
- self.conv_layer_2 = ConvModule(in_dim, inter_dim, kernel_size=1)
- self.conv_layer_3 = ConvModule(2 * inter_dim, out_dim, kernel_size=1)
- self.module = nn.Sequential(*[
- RepNBottleneck(in_dim = inter_dim,
- out_dim = inter_dim,
- kernel_size = [3, 3],
- shortcut = shortcut,
- expansion = 1.0,
- ) for _ in range(num_blocks)])
- def forward(self, x):
- x1 = self.conv_layer_1(x)
- x2 = self.module(self.conv_layer_2(x))
- return self.conv_layer_3(torch.cat([x1, x2], dim=1))
- class RepGElanLayer(nn.Module):
- """YOLOv9's GELAN module"""
- def __init__(self,
- in_dim :int,
- inter_dims :List,
- out_dim :int,
- num_blocks :int = 1,
- shortcut :bool = False,
- ):
- super(RepGElanLayer, self).__init__()
- # ----------- Basic parameters -----------
- self.in_dim = in_dim
- self.inter_dims = inter_dims
- self.out_dim = out_dim
- # ----------- Network parameters -----------
- self.conv_layer_1 = ConvModule(in_dim, inter_dims[0], kernel_size=1)
- self.elan_module_1 = nn.Sequential(
- RepNCSP(inter_dims[0]//2,
- inter_dims[1],
- num_blocks = num_blocks,
- shortcut = shortcut,
- expansion = 0.5,
- ),
- ConvModule(inter_dims[1], inter_dims[1], kernel_size=3, padding=1)
- )
- self.elan_module_2 = nn.Sequential(
- RepNCSP(inter_dims[1],
- inter_dims[1],
- num_blocks = num_blocks,
- shortcut = shortcut,
- expansion = 0.5,
- ),
- ConvModule(inter_dims[1], inter_dims[1],kernel_size=3, padding=1)
- )
- self.conv_layer_2 = ConvModule(inter_dims[0] + 2*self.inter_dims[1], out_dim, kernel_size=1)
- def forward(self, x):
- # Input proj
- x1, x2 = torch.chunk(self.conv_layer_1(x), 2, dim=1)
- out = list([x1, x2])
- # ELAN module
- out.append(self.elan_module_1(out[-1]))
- out.append(self.elan_module_2(out[-1]))
- # Output proj
- out = self.conv_layer_2(torch.cat(out, dim=1))
- return out
-
|