gelan_pafpn.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from typing import List
  5. try:
  6. from .modules import RepGElanLayer, ADown
  7. except:
  8. from modules import RepGElanLayer, ADown
  9. # PaFPN-ELAN
  10. class GElanPaFPN(nn.Module):
  11. def __init__(self, cfg, in_dims :List = [256, 512, 256]):
  12. super(GElanPaFPN, self).__init__()
  13. # --------------------------- Basic Parameters ---------------------------
  14. self.in_dims = in_dims[::-1]
  15. self.out_dims = [cfg.fpn_feats_td["p3"][1], cfg.fpn_feats_bu["p4"][1], cfg.fpn_feats_bu["p5"][1]]
  16. # ---------------- Top dwon ----------------
  17. ## P5 -> P4
  18. self.top_down_layer_1 = RepGElanLayer(in_dim = self.in_dims[0] + self.in_dims[1],
  19. inter_dims = cfg.fpn_feats_td["p4"][0],
  20. out_dim = cfg.fpn_feats_td["p4"][1],
  21. num_blocks = cfg.fpn_depth,
  22. shortcut = False,
  23. )
  24. ## P4 -> P3
  25. self.top_down_layer_2 = RepGElanLayer(in_dim = cfg.fpn_feats_td["p4"][1] + self.in_dims[2],
  26. inter_dims = cfg.fpn_feats_td["p3"][0],
  27. out_dim = cfg.fpn_feats_td["p3"][1],
  28. num_blocks = cfg.fpn_depth,
  29. shortcut = False,
  30. )
  31. # ---------------- Bottom up ----------------
  32. ## P3 -> P4
  33. self.dowmsample_layer_1 = ADown(cfg.fpn_feats_td["p3"][1], cfg.fpn_feats_td["p3"][1])
  34. self.bottom_up_layer_1 = RepGElanLayer(in_dim = cfg.fpn_feats_td["p3"][1] + cfg.fpn_feats_td["p4"][1],
  35. inter_dims = cfg.fpn_feats_bu["p4"][0],
  36. out_dim = cfg.fpn_feats_bu["p4"][1],
  37. num_blocks = cfg.fpn_depth,
  38. shortcut = False,
  39. )
  40. ## P4 -> P5
  41. self.dowmsample_layer_2 = ADown(cfg.fpn_feats_bu["p4"][1], cfg.fpn_feats_bu["p4"][1])
  42. self.bottom_up_layer_2 = RepGElanLayer(in_dim = cfg.fpn_feats_td["p4"][1] + self.in_dims[0],
  43. inter_dims = cfg.fpn_feats_bu["p5"][0],
  44. out_dim = cfg.fpn_feats_bu["p5"][1],
  45. num_blocks = cfg.fpn_depth,
  46. shortcut = False,
  47. )
  48. self.init_weights()
  49. def init_weights(self):
  50. """Initialize the parameters."""
  51. for m in self.modules():
  52. if isinstance(m, torch.nn.Conv2d):
  53. m.reset_parameters()
  54. def forward(self, features):
  55. c3, c4, c5 = features
  56. # ------------------ Top down FPN ------------------
  57. ## P5 -> P4
  58. p5_up = F.interpolate(c5, scale_factor=2.0)
  59. p4 = self.top_down_layer_1(torch.cat([p5_up, c4], dim=1))
  60. ## P4 -> P3
  61. p4_up = F.interpolate(p4, scale_factor=2.0)
  62. p3 = self.top_down_layer_2(torch.cat([p4_up, c3], dim=1))
  63. # ------------------ Bottom up FPN ------------------
  64. ## p3 -> P4
  65. p3_ds = self.dowmsample_layer_1(p3)
  66. p4 = self.bottom_up_layer_1(torch.cat([p3_ds, p4], dim=1))
  67. ## P4 -> 5
  68. p4_ds = self.dowmsample_layer_2(p4)
  69. p5 = self.bottom_up_layer_2(torch.cat([p4_ds, c5], dim=1))
  70. out_feats = [p3, p4, p5] # [P3, P4, P5]
  71. return out_feats
  72. if __name__=='__main__':
  73. import time
  74. from thop import profile
  75. # Model config
  76. # GElan-Base config
  77. class GElanBaseConfig(object):
  78. def __init__(self) -> None:
  79. # ---------------- Model config ----------------
  80. self.width = 0.50
  81. self.depth = 0.34
  82. self.ratio = 2.0
  83. self.out_stride = [8, 16, 32]
  84. self.max_stride = 32
  85. ## FPN
  86. self.fpn_depth = 3
  87. self.fpn_feats_td = {
  88. "p4": [[256, 128], 256],
  89. "p3": [[128, 64], 128],
  90. }
  91. self.fpn_feats_bu = {
  92. "p4": [[256, 128], 256],
  93. "p5": [[256, 128], 256],
  94. }
  95. cfg = GElanBaseConfig()
  96. # Build a head
  97. in_dims = [128, 256, 256]
  98. fpn = GElanPaFPN(cfg, in_dims)
  99. # Inference
  100. x = [torch.randn(1, in_dims[0], 80, 80),
  101. torch.randn(1, in_dims[1], 40, 40),
  102. torch.randn(1, in_dims[2], 20, 20)]
  103. t0 = time.time()
  104. output = fpn(x)
  105. t1 = time.time()
  106. print('Time: ', t1 - t0)
  107. print('====== FPN output ====== ')
  108. for level, feat in enumerate(output):
  109. print("- Level-{} : ".format(level), feat.shape)
  110. flops, params = profile(fpn, inputs=(x, ), verbose=False)
  111. print('==============================')
  112. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  113. print('Params : {:.2f} M'.format(params / 1e6))