yolov5_head.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. import torch
  2. import torch.nn as nn
  3. try:
  4. from .modules import ConvModule
  5. except:
  6. from modules import ConvModule
  7. ## Single-level Detection Head
  8. class DetHead(nn.Module):
  9. def __init__(self,
  10. in_dim :int = 256,
  11. cls_head_dim :int = 256,
  12. reg_head_dim :int = 256,
  13. num_cls_head :int = 2,
  14. num_reg_head :int = 2,
  15. ):
  16. super().__init__()
  17. # --------- Basic Parameters ----------
  18. self.in_dim = in_dim
  19. self.num_cls_head = num_cls_head
  20. self.num_reg_head = num_reg_head
  21. # --------- Network Parameters ----------
  22. ## cls head
  23. cls_feats = []
  24. self.cls_head_dim = cls_head_dim
  25. for i in range(num_cls_head):
  26. if i == 0:
  27. cls_feats.append(ConvModule(in_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  28. else:
  29. cls_feats.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  30. ## reg head
  31. reg_feats = []
  32. self.reg_head_dim = reg_head_dim
  33. for i in range(num_reg_head):
  34. if i == 0:
  35. reg_feats.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1))
  36. else:
  37. reg_feats.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1))
  38. self.cls_feats = nn.Sequential(*cls_feats)
  39. self.reg_feats = nn.Sequential(*reg_feats)
  40. def forward(self, x):
  41. """
  42. in_feats: (Tensor) [B, C, H, W]
  43. """
  44. cls_feats = self.cls_feats(x)
  45. reg_feats = self.reg_feats(x)
  46. return cls_feats, reg_feats
  47. ## Multi-level Detection Head
  48. class Yolov5DetHead(nn.Module):
  49. def __init__(self, cfg, in_dims):
  50. super().__init__()
  51. ## ----------- Network Parameters -----------
  52. self.multi_level_heads = nn.ModuleList(
  53. [DetHead(in_dim = in_dims[level],
  54. cls_head_dim = round(cfg.head_dim * cfg.width),
  55. reg_head_dim = round(cfg.head_dim * cfg.width),
  56. num_cls_head = cfg.num_cls_head,
  57. num_reg_head = cfg.num_reg_head,
  58. ) for level in range(len(cfg.out_stride))])
  59. # --------- Basic Parameters ----------
  60. self.in_dims = in_dims
  61. self.cls_head_dim = cfg.head_dim
  62. self.reg_head_dim = cfg.head_dim
  63. # Initialize all layers
  64. self.init_weights()
  65. def init_weights(self):
  66. """Initialize the parameters."""
  67. for m in self.modules():
  68. if isinstance(m, torch.nn.Conv2d):
  69. # In order to be consistent with the source code,
  70. # reset the Conv2d initialization parameters
  71. m.reset_parameters()
  72. def forward(self, feats):
  73. """
  74. feats: List[(Tensor)] [[B, C, H, W], ...]
  75. """
  76. cls_feats = []
  77. reg_feats = []
  78. for feat, head in zip(feats, self.multi_level_heads):
  79. # ---------------- Pred ----------------
  80. cls_feat, reg_feat = head(feat)
  81. cls_feats.append(cls_feat)
  82. reg_feats.append(reg_feat)
  83. return cls_feats, reg_feats
  84. if __name__=='__main__':
  85. import time
  86. from thop import profile
  87. # Model config
  88. # YOLOv5-Base config
  89. class Yolov5BaseConfig(object):
  90. def __init__(self) -> None:
  91. # ---------------- Model config ----------------
  92. self.width = 0.50
  93. self.depth = 0.34
  94. self.out_stride = [8, 16, 32]
  95. self.max_stride = 32
  96. self.num_levels = 3
  97. ## Head
  98. self.head_dim = 256
  99. self.num_cls_head = 2
  100. self.num_reg_head = 2
  101. cfg = Yolov5BaseConfig()
  102. # Build a head
  103. pyramid_feats = [torch.randn(1, cfg.head_dim, 80, 80),
  104. torch.randn(1, cfg.head_dim, 40, 40),
  105. torch.randn(1, cfg.head_dim, 20, 20)]
  106. head = Yolov5DetHead(cfg, [cfg.head_dim]*3)
  107. # Inference
  108. t0 = time.time()
  109. cls_feats, reg_feats = head(pyramid_feats)
  110. t1 = time.time()
  111. print('Time: ', t1 - t0)
  112. print("====== Yolov5 Head output ======")
  113. for level, (cls_f, reg_f) in enumerate(zip(cls_feats, reg_feats)):
  114. print("- Level-{} : ".format(level), cls_f.shape, reg_f.shape)
  115. flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False)
  116. print('============== FLOPs & Params ================')
  117. print(' - FLOPs : {:.2f} G'.format(flops / 1e9 * 2))
  118. print(' - Params : {:.2f} M'.format(params / 1e6))