yolov10.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolov10_backbone import Yolov10Backbone
  6. from .yolov10_pafpn import Yolov10PaFPN
  7. from .yolov10_head import Yolov10DetHead
  8. from utils.misc import multiclass_nms
  9. # YOLOv10
  10. class Yolov10(nn.Module):
  11. def __init__(self, cfg, is_val = False) -> None:
  12. super(Yolov10, self).__init__()
  13. # ---------------------- Basic setting ----------------------
  14. self.cfg = cfg
  15. self.num_classes = cfg.num_classes
  16. ## Post-process parameters
  17. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  18. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  19. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  20. self.no_multi_labels = False if is_val else True
  21. self.backbone = Yolov10Backbone(cfg)
  22. self.pafpn = Yolov10PaFPN(cfg, self.backbone.feat_dims[-3:])
  23. self.det_head = Yolov10DetHead(cfg, self.pafpn.out_dims)
  24. def post_process(self, cls_preds, box_preds):
  25. """
  26. We process predictions at each scale hierarchically
  27. Input:
  28. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  29. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  30. Output:
  31. bboxes: np.array -> [N, 4]
  32. scores: np.array -> [N,]
  33. labels: np.array -> [N,]
  34. """
  35. all_scores = []
  36. all_labels = []
  37. all_bboxes = []
  38. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  39. cls_pred_i = cls_pred_i[0]
  40. box_pred_i = box_pred_i[0]
  41. if self.no_multi_labels:
  42. # [M,]
  43. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  44. # Keep top k top scoring indices only.
  45. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  46. # topk candidates
  47. predicted_prob, topk_idxs = scores.sort(descending=True)
  48. topk_scores = predicted_prob[:num_topk]
  49. topk_idxs = topk_idxs[:num_topk]
  50. # filter out the proposals with low confidence score
  51. keep_idxs = topk_scores > self.conf_thresh
  52. scores = topk_scores[keep_idxs]
  53. topk_idxs = topk_idxs[keep_idxs]
  54. labels = labels[topk_idxs]
  55. bboxes = box_pred_i[topk_idxs]
  56. else:
  57. # [M, C] -> [MC,]
  58. scores_i = cls_pred_i.sigmoid().flatten()
  59. # Keep top k top scoring indices only.
  60. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  61. # torch.sort is actually faster than .topk (at least on GPUs)
  62. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  63. topk_scores = predicted_prob[:num_topk]
  64. topk_idxs = topk_idxs[:num_topk]
  65. # filter out the proposals with low confidence score
  66. keep_idxs = topk_scores > self.conf_thresh
  67. scores = topk_scores[keep_idxs]
  68. topk_idxs = topk_idxs[keep_idxs]
  69. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  70. labels = topk_idxs % self.num_classes
  71. bboxes = box_pred_i[anchor_idxs]
  72. all_scores.append(scores)
  73. all_labels.append(labels)
  74. all_bboxes.append(bboxes)
  75. scores = torch.cat(all_scores, dim=0)
  76. labels = torch.cat(all_labels, dim=0)
  77. bboxes = torch.cat(all_bboxes, dim=0)
  78. # to cpu & numpy
  79. scores = scores.cpu().numpy()
  80. labels = labels.cpu().numpy()
  81. bboxes = bboxes.cpu().numpy()
  82. # nms
  83. scores, labels, bboxes = multiclass_nms(
  84. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  85. return bboxes, scores, labels
  86. def forward(self, x):
  87. pyramid_feats = self.backbone(x)
  88. pyramid_feats = self.pafpn(pyramid_feats)
  89. outputs = self.det_head(pyramid_feats)
  90. outputs['image_size'] = [x.shape[2], x.shape[3]]
  91. if not self.training:
  92. all_cls_preds = outputs['pred_cls']
  93. all_box_preds = outputs['pred_box']
  94. # post process
  95. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  96. outputs = {
  97. "scores": scores,
  98. "labels": labels,
  99. "bboxes": bboxes
  100. }
  101. return outputs