| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- """
- Utilities for bounding box manipulation and GIoU.
- """
- import torch
- from torchvision.ops.boxes import box_area
- def get_ious(bboxes1,
- bboxes2,
- box_mode="xyxy",
- iou_type="iou"):
- """
- Compute iou loss of type ['iou', 'giou', 'linear_iou']
- Args:
- inputs (tensor): pred values
- targets (tensor): target values
- weight (tensor): loss weight
- box_mode (str): 'xyxy' or 'ltrb', 'ltrb' is currently supported.
- loss_type (str): 'giou' or 'iou' or 'linear_iou'
- reduction (str): reduction manner
- Returns:
- loss (tensor): computed iou loss.
- """
- if box_mode == "ltrb":
- bboxes1 = torch.cat((-bboxes1[..., :2], bboxes1[..., 2:]), dim=-1)
- bboxes2 = torch.cat((-bboxes2[..., :2], bboxes2[..., 2:]), dim=-1)
- elif box_mode != "xyxy":
- raise NotImplementedError
- eps = torch.finfo(torch.float32).eps
- bboxes1_area = (bboxes1[..., 2] - bboxes1[..., 0]).clamp_(min=0) \
- * (bboxes1[..., 3] - bboxes1[..., 1]).clamp_(min=0)
- bboxes2_area = (bboxes2[..., 2] - bboxes2[..., 0]).clamp_(min=0) \
- * (bboxes2[..., 3] - bboxes2[..., 1]).clamp_(min=0)
- w_intersect = (torch.min(bboxes1[..., 2], bboxes2[..., 2])
- - torch.max(bboxes1[..., 0], bboxes2[..., 0])).clamp_(min=0)
- h_intersect = (torch.min(bboxes1[..., 3], bboxes2[..., 3])
- - torch.max(bboxes1[..., 1], bboxes2[..., 1])).clamp_(min=0)
- area_intersect = w_intersect * h_intersect
- area_union = bboxes2_area + bboxes1_area - area_intersect
- ious = area_intersect / area_union.clamp(min=eps)
- if iou_type == "iou":
- return ious
- elif iou_type == "giou":
- g_w_intersect = torch.max(bboxes1[..., 2], bboxes2[..., 2]) \
- - torch.min(bboxes1[..., 0], bboxes2[..., 0])
- g_h_intersect = torch.max(bboxes1[..., 3], bboxes2[..., 3]) \
- - torch.min(bboxes1[..., 1], bboxes2[..., 1])
- ac_uion = g_w_intersect * g_h_intersect
- gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps)
- return gious
- else:
- raise NotImplementedError
- def box_cxcywh_to_xyxy(x):
- x_c, y_c, w, h = x.unbind(-1)
- b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
- (x_c + 0.5 * w), (y_c + 0.5 * h)]
- return torch.stack(b, dim=-1)
- def box_xyxy_to_cxcywh(x):
- x0, y0, x1, y1 = x.unbind(-1)
- b = [(x0 + x1) / 2, (y0 + y1) / 2,
- (x1 - x0), (y1 - y0)]
- return torch.stack(b, dim=-1)
- # modified from torchvision to also return the union
- def box_iou(boxes1, boxes2):
- area1 = box_area(boxes1)
- area2 = box_area(boxes2)
- lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
- rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
- wh = (rb - lt).clamp(min=0) # [N,M,2]
- inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
- union = area1[:, None] + area2 - inter
- union[union == 0.0] = 1.0
- iou = inter / union
-
- return iou, union
- def generalized_box_iou(boxes1, boxes2):
- """
- Generalized IoU from https://giou.stanford.edu/
- The boxes should be in [x0, y0, x1, y1] format
- Returns a [N, M] pairwise matrix, where N = len(boxes1)
- and M = len(boxes2)
- """
- # degenerate boxes gives inf / nan results
- # so do an early check
- assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
- assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
- iou, union = box_iou(boxes1, boxes2)
- lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
- rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
- wh = (rb - lt).clamp(min=0) # [N,M,2]
- area = wh[:, :, 0] * wh[:, :, 1]
- return iou - (area - union) / area
|