loss.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox_iou
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import TaskAlignedAssigner
  6. class SetCriterion(object):
  7. def __init__(self, cfg):
  8. # --------------- Basic parameters ---------------
  9. self.cfg = cfg
  10. self.reg_max = cfg.reg_max
  11. self.num_classes = cfg.num_classes
  12. # --------------- Loss config ---------------
  13. self.loss_cls_weight = cfg.loss_cls
  14. self.loss_box_weight = cfg.loss_box
  15. # --------------- Matcher config ---------------
  16. self.matcher = TaskAlignedAssigner(num_classes = cfg.num_classes,
  17. topk_candidates = cfg.tal_topk_candidates,
  18. alpha = cfg.tal_alpha,
  19. beta = cfg.tal_beta
  20. )
  21. def loss_classes(self, pred_logits, gt_score):
  22. alpha, gamma = 0.75, 2.0
  23. pred_sigmoid = pred_logits.sigmoid()
  24. focal_weight = gt_score * (gt_score > 0.0).float() + \
  25. alpha * (pred_sigmoid - gt_score).abs().pow(gamma) * \
  26. (gt_score <= 0.0).float()
  27. loss_cls = F.binary_cross_entropy_with_logits(
  28. pred_logits, gt_score, reduction='none') * focal_weight
  29. return loss_cls
  30. def loss_bboxes(self, pred_box, gt_box, bbox_weight):
  31. # regression loss
  32. ious = bbox_iou(pred_box, gt_box, xywh=False, GIoU=True)
  33. loss_box = (1.0 - ious.squeeze(-1)) * bbox_weight
  34. return loss_box
  35. def __call__(self, outputs, targets):
  36. """
  37. outputs['pred_cls']: List(Tensor) [B, M, C]
  38. outputs['pred_reg']: List(Tensor) [B, M, 4*(reg_max+1)]
  39. outputs['pred_box']: List(Tensor) [B, M, 4]
  40. outputs['anchors']: List(Tensor) [M, 2]
  41. outputs['strides']: List(Int) [8, 16, 32] output stride
  42. outputs['stride_tensor']: List(Tensor) [M, 1]
  43. targets: (List) [dict{'boxes': [...],
  44. 'labels': [...],
  45. 'orig_size': ...}, ...]
  46. """
  47. # preds: [B, M, C]
  48. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  49. box_preds = torch.cat(outputs['pred_box'], dim=1)
  50. bs, num_anchors = cls_preds.shape[:2]
  51. device = cls_preds.device
  52. anchors = torch.cat(outputs['anchors'], dim=0)
  53. # --------------- label assignment ---------------
  54. gt_score_targets = []
  55. gt_bbox_targets = []
  56. fg_masks = []
  57. for bid in range(bs):
  58. tgt_labels = targets[bid]["labels"].to(device) # [Mp,]
  59. tgt_boxs = targets[bid]["boxes"].to(device) # [Mp, 4]
  60. if self.cfg.normalize_coords:
  61. img_h, img_w = outputs['image_size']
  62. tgt_boxs[..., [0, 2]] *= img_w
  63. tgt_boxs[..., [1, 3]] *= img_h
  64. if self.cfg.box_format == 'xywh':
  65. tgt_boxs_x1y1 = tgt_boxs[..., :2] - 0.5 * tgt_boxs[..., 2:]
  66. tgt_boxs_x2y2 = tgt_boxs[..., :2] + 0.5 * tgt_boxs[..., 2:]
  67. tgt_boxs = torch.cat([tgt_boxs_x1y1, tgt_boxs_x2y2], dim=-1)
  68. # check target
  69. if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
  70. # There is no valid gt
  71. fg_mask = cls_preds.new_zeros(1, num_anchors).bool() # [1, M,]
  72. gt_label = cls_preds.new_zeros((1, num_anchors)).long() # [1, M,]
  73. gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)).float() # [1, M, C]
  74. gt_box = cls_preds.new_zeros((1, num_anchors, 4)).float() # [1, M, 4]
  75. else:
  76. tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
  77. tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
  78. (
  79. _, # [1, M]
  80. gt_box, # [1, M, 4]
  81. gt_score, # [1, M, C]
  82. fg_mask, # [1, M,]
  83. _
  84. ) = self.matcher(
  85. pd_scores = cls_preds[bid:bid+1].detach().sigmoid(),
  86. pd_bboxes = box_preds[bid:bid+1].detach(),
  87. anc_points = anchors,
  88. gt_labels = tgt_labels,
  89. gt_bboxes = tgt_boxs
  90. )
  91. gt_score_targets.append(gt_score)
  92. gt_bbox_targets.append(gt_box)
  93. fg_masks.append(fg_mask)
  94. # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
  95. fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
  96. gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
  97. gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
  98. num_fgs = gt_score_targets.sum()
  99. # Average loss normalizer across all the GPUs
  100. if is_dist_avail_and_initialized():
  101. torch.distributed.all_reduce(num_fgs)
  102. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  103. # ------------------ Classification loss ------------------
  104. cls_preds = cls_preds.view(-1, self.num_classes)
  105. loss_cls = self.loss_classes(cls_preds, gt_score_targets)
  106. loss_cls = loss_cls.sum() / num_fgs
  107. # ------------------ Regression loss ------------------
  108. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  109. box_targets_pos = gt_bbox_targets.view(-1, 4)[fg_masks]
  110. bbox_weight = gt_score_targets[fg_masks].sum(-1)
  111. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, bbox_weight)
  112. loss_box = loss_box.sum() / num_fgs
  113. # total loss
  114. losses = loss_cls * self.loss_cls_weight + loss_box * self.loss_box_weight
  115. loss_dict = dict(
  116. loss_cls = loss_cls,
  117. loss_box = loss_box,
  118. losses = losses
  119. )
  120. return loss_dict
  121. if __name__ == "__main__":
  122. pass