yolov8_head.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. try:
  5. from .modules import ConvModule
  6. except:
  7. from modules import ConvModule
  8. # -------------------- Detection Head --------------------
  9. ## Single-level Detection Head
  10. class DetHead(nn.Module):
  11. def __init__(self,
  12. in_dim :int = 256,
  13. cls_head_dim :int = 256,
  14. reg_head_dim :int = 256,
  15. num_cls_head :int = 2,
  16. num_reg_head :int = 2,
  17. ):
  18. super().__init__()
  19. # --------- Basic Parameters ----------
  20. self.in_dim = in_dim
  21. self.num_cls_head = num_cls_head
  22. self.num_reg_head = num_reg_head
  23. # --------- Network Parameters ----------
  24. ## classification head
  25. cls_feats = []
  26. self.cls_head_dim = cls_head_dim
  27. for i in range(num_cls_head):
  28. if i == 0:
  29. cls_feats.append(ConvModule(in_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  30. else:
  31. cls_feats.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  32. ## bbox regression head
  33. reg_feats = []
  34. self.reg_head_dim = reg_head_dim
  35. for i in range(num_reg_head):
  36. if i == 0:
  37. reg_feats.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1))
  38. else:
  39. reg_feats.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1))
  40. self.cls_feats = nn.Sequential(*cls_feats)
  41. self.reg_feats = nn.Sequential(*reg_feats)
  42. self.init_weights()
  43. def init_weights(self):
  44. """Initialize the parameters."""
  45. for m in self.modules():
  46. if isinstance(m, torch.nn.Conv2d):
  47. m.reset_parameters()
  48. def forward(self, x):
  49. """
  50. in_feats: (Tensor) [B, C, H, W]
  51. """
  52. cls_feats = self.cls_feats(x)
  53. reg_feats = self.reg_feats(x)
  54. return cls_feats, reg_feats
  55. ## Multi-level Detection Head
  56. class Yolov8DetHead(nn.Module):
  57. def __init__(self, cfg, in_dims: List = [256, 512, 1024]):
  58. super().__init__()
  59. self.num_levels = len(cfg.out_stride)
  60. ## ----------- Network Parameters -----------
  61. self.multi_level_heads = nn.ModuleList(
  62. [DetHead(in_dim = in_dims[level],
  63. cls_head_dim = max(in_dims[0], min(cfg.num_classes, 128)),
  64. reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max),
  65. num_cls_head = cfg.num_cls_head,
  66. num_reg_head = cfg.num_reg_head,
  67. ) for level in range(self.num_levels)])
  68. # --------- Basic Parameters ----------
  69. self.in_dims = in_dims
  70. self.cls_head_dim = self.multi_level_heads[0].cls_head_dim
  71. self.reg_head_dim = self.multi_level_heads[0].reg_head_dim
  72. def forward(self, feats):
  73. """
  74. feats: List[(Tensor)] [[B, C, H, W], ...]
  75. """
  76. cls_feats = []
  77. reg_feats = []
  78. for feat, head in zip(feats, self.multi_level_heads):
  79. # ---------------- Pred ----------------
  80. cls_feat, reg_feat = head(feat)
  81. cls_feats.append(cls_feat)
  82. reg_feats.append(reg_feat)
  83. return cls_feats, reg_feats
  84. if __name__=='__main__':
  85. import time
  86. from thop import profile
  87. # YOLOv8-Base config
  88. class Yolov8BaseConfig(object):
  89. def __init__(self) -> None:
  90. # ---------------- Model config ----------------
  91. self.width = 0.25
  92. self.depth = 0.34
  93. self.ratio = 2.0
  94. self.reg_max = 16
  95. self.out_stride = [8, 16, 32]
  96. self.max_stride = 32
  97. self.num_levels = 3
  98. ## Head
  99. self.num_cls_head = 2
  100. self.num_reg_head = 2
  101. cfg = Yolov8BaseConfig()
  102. cfg.num_classes = 80
  103. # Build a head
  104. fpn_dims = [64, 128, 256]
  105. pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80),
  106. torch.randn(1, fpn_dims[1], 40, 40),
  107. torch.randn(1, fpn_dims[2], 20, 20)]
  108. head = Yolov8DetHead(cfg, fpn_dims)
  109. # Inference
  110. t0 = time.time()
  111. cls_feats, reg_feats = head(pyramid_feats)
  112. t1 = time.time()
  113. print('Time: ', t1 - t0)
  114. print("====== Yolov8 Head output ======")
  115. for level, (cls_f, reg_f) in enumerate(zip(cls_feats, reg_feats)):
  116. print("- Level-{} : ".format(level), cls_f.shape, reg_f.shape)
  117. flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False)
  118. print('==============================')
  119. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  120. print('Params : {:.2f} M'.format(params / 1e6))