| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- import torch
- import torch.nn as nn
- # --------------- Model components ---------------
- from .yolof_backbone import YolofBackbone
- from .yolof_encoder import DilatedEncoder
- from .yolof_decoder import YolofHead
- # --------------- External components ---------------
- from utils.misc import multiclass_nms
- # ------------------------ You Only Look One-level Feature ------------------------
- class Yolof(nn.Module):
- def __init__(self, cfg, is_val: bool = False):
- super(Yolof, self).__init__()
- # ---------------------- Basic setting ----------------------
- self.cfg = cfg
- self.num_classes = cfg.num_classes
- ## Post-process parameters
- self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
- self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
- self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
- self.no_multi_labels = False if is_val else True
- # ---------------------- Network Parameters ----------------------
- self.backbone = YolofBackbone(cfg)
- self.encoder = DilatedEncoder(cfg, self.backbone.feat_dim, cfg.head_dim)
- self.decoder = YolofHead(cfg, self.encoder.out_dim, cfg.head_dim)
- def post_process(self, cls_pred, box_pred):
- """
- Input:
- cls_pred: (Tensor) [[H x W x KA, C]
- box_pred: (Tensor) [H x W x KA, 4]
- """
- cls_pred = cls_pred[0]
- box_pred = box_pred[0]
-
- # (H x W x KA x C,)
- scores_i = cls_pred.sigmoid().flatten()
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, box_pred.size(0))
- # torch.sort is actually faster than .topk (at least on GPUs)
- predicted_prob, topk_idxs = scores_i.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- topk_idxs = topk_idxs[keep_idxs]
- # final scores
- scores = topk_scores[keep_idxs]
- # final labels
- labels = topk_idxs % self.num_classes
- # final bboxes
- anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- bboxes = box_pred[anchor_idxs]
- # to cpu & numpy
- scores = scores.cpu().numpy()
- labels = labels.cpu().numpy()
- bboxes = bboxes.cpu().numpy()
- # nms
- scores, labels, bboxes = multiclass_nms(
- scores, labels, bboxes, self.nms_thresh, self.num_classes)
- return bboxes, scores, labels
- def forward(self, x):
- x = self.backbone(x)
- x = self.encoder(x)
- outputs = self.decoder(x)
- if not self.training:
- # ---------------- PostProcess ----------------
- cls_pred = outputs["pred_cls"]
- box_pred = outputs["pred_box"]
- bboxes, scores, labels = self.post_process(cls_pred, box_pred)
- outputs = {
- 'scores': scores,
- 'labels': labels,
- 'bboxes': bboxes
- }
- return outputs
|