| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- import math
- import torch
- import torch.nn as nn
- from typing import List
- try:
- from .modules import ConvModule, DflLayer
- except:
- from modules import ConvModule, DflLayer
- # YOLO11 detection head
- class Yolo11DetHead(nn.Module):
- def __init__(self, cfg, fpn_dims: List = [64, 128, 245]):
- super().__init__()
- self.out_stride = cfg.out_stride
- self.reg_max = cfg.reg_max
- self.num_classes = cfg.num_classes
- self.cls_dim = max(fpn_dims[0], min(cfg.num_classes, 128))
- self.reg_dim = max(fpn_dims[0]//4, 16, 4*cfg.reg_max)
- # classification head
- self.cls_heads = nn.ModuleList(
- nn.Sequential(
- nn.Sequential(ConvModule(dim, dim, kernel_size=3, stride=1, groups=dim),
- ConvModule(dim, self.cls_dim, kernel_size=1)),
- nn.Sequential(ConvModule(self.cls_dim, self.cls_dim, kernel_size=3, stride=1, groups=self.cls_dim),
- ConvModule(self.cls_dim, self.cls_dim, kernel_size=1)),
- nn.Conv2d(self.cls_dim, cfg.num_classes, kernel_size=1),
- )
- for dim in fpn_dims
- )
- # bbox regression head
- self.reg_heads = nn.ModuleList(
- nn.Sequential(
- ConvModule(dim, self.reg_dim, kernel_size=3, stride=1),
- ConvModule(self.reg_dim, self.reg_dim, kernel_size=3, stride=1),
- nn.Conv2d(self.reg_dim, 4*cfg.reg_max, kernel_size=1),
- )
- for dim in fpn_dims
- )
- # DFL layer for decoding bbox
- self.dfl_layer = DflLayer(cfg.reg_max)
- for p in self.dfl_layer.parameters():
- p.requires_grad = False
- self.init_bias()
-
- def init_bias(self):
- # cls pred
- for i, m in enumerate(self.cls_heads):
- b = m[-1].bias.view(1, -1)
- b.data.fill_(math.log(5 / self.num_classes / (640. / self.out_stride[i]) ** 2))
- m[-1].bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred
- for m in self.reg_heads:
- b = m[-1].bias.view(-1, )
- b.data.fill_(1.0)
- m[-1].bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
-
- w = m[-1].weight
- w.data.fill_(0.)
- m[-1].weight = torch.nn.Parameter(w, requires_grad=True)
- def generate_anchors(self, fmp_size, level):
- """
- fmp_size: (List) [H, W]
- """
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- anchors += 0.5 # add center offset
- anchors *= self.out_stride[level]
- return anchors
- def forward(self, fpn_feats):
- anchors = []
- strides = []
- cls_preds = []
- reg_preds = []
- box_preds = []
- for lvl, (feat, cls_head, reg_head) in enumerate(zip(fpn_feats, self.cls_heads, self.reg_heads)):
- bs, c, h, w = feat.size()
- device = feat.device
-
- # Prediction
- cls_pred = cls_head(feat)
- reg_pred = reg_head(feat)
- # [bs, c, h, w] -> [bs, c, hw] -> [bs, hw, c]
- cls_pred = cls_pred.flatten(2).permute(0, 2, 1).contiguous()
- reg_pred = reg_pred.flatten(2).permute(0, 2, 1).contiguous()
- # anchor points: [M, 2]
- anchor = self.generate_anchors(fmp_size=[h, w], level=lvl).to(device)
- stride = torch.ones_like(anchor[..., :1]) * self.out_stride[lvl]
- # Decode bbox coords
- box_pred = self.dfl_layer(reg_pred, anchor[None], self.out_stride[lvl])
- # collect results
- anchors.append(anchor)
- strides.append(stride)
- cls_preds.append(cls_pred)
- reg_preds.append(reg_pred)
- box_preds.append(box_pred)
- # output dict
- outputs = {"pred_cls": cls_preds, # List(Tensor) [B, M, C]
- "pred_reg": reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
- "pred_box": box_preds, # List(Tensor) [B, M, 4]
- "anchors": anchors, # List(Tensor) [M, 2]
- "stride_tensors": strides, # List(Tensor) [M, 1]
- "strides": self.out_stride, # List(Int) = [8, 16, 32]
- }
- return outputs
- if __name__=='__main__':
- from thop import profile
- # YOLO11-Base config
- class Yolo11BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.width = 0.50
- self.depth = 0.34
- self.ratio = 2.0
- self.reg_max = 16
- self.out_stride = [8, 16, 32]
- self.max_stride = 32
- self.num_levels = 3
- self.num_classes = 80
- cfg = Yolo11BaseConfig()
- # Random data
- fpn_dims = [256, 512, 512]
- x = [torch.randn(1, fpn_dims[0], 80, 80),
- torch.randn(1, fpn_dims[1], 40, 40),
- torch.randn(1, fpn_dims[2], 20, 20)]
- # Neck model
- model = Yolo11DetHead(cfg, fpn_dims)
- # Inference
- outputs = model(x)
- print('============ FLOPs & Params ===========')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
-
|