yolo11.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolo11_backbone import Yolo11Backbone
  6. from .yolo11_pafpn import Yolo11PaFPN
  7. from .yolo11_head import Yolo11DetHead
  8. from utils.misc import multiclass_nms
  9. # YOLO11
  10. class Yolo11(nn.Module):
  11. def __init__(self,
  12. cfg,
  13. is_val = False,
  14. ) -> None:
  15. super(Yolo11, self).__init__()
  16. # ---------------------- Basic setting ----------------------
  17. self.cfg = cfg
  18. self.num_classes = cfg.num_classes
  19. ## Post-process parameters
  20. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  21. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  22. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  23. self.no_multi_labels = False if is_val else True
  24. self.backbone = Yolo11Backbone(cfg)
  25. self.pafpn = Yolo11PaFPN(cfg, self.backbone.feat_dims[-3:])
  26. self.det_head = Yolo11DetHead(cfg, self.pafpn.out_dims)
  27. def post_process(self, cls_preds, box_preds):
  28. """
  29. We process predictions at each scale hierarchically
  30. Input:
  31. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  32. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  33. Output:
  34. bboxes: np.array -> [N, 4]
  35. scores: np.array -> [N,]
  36. labels: np.array -> [N,]
  37. """
  38. all_scores = []
  39. all_labels = []
  40. all_bboxes = []
  41. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  42. cls_pred_i = cls_pred_i[0]
  43. box_pred_i = box_pred_i[0]
  44. if self.no_multi_labels:
  45. # [M,]
  46. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  47. # Keep top k top scoring indices only.
  48. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  49. # topk candidates
  50. predicted_prob, topk_idxs = scores.sort(descending=True)
  51. topk_scores = predicted_prob[:num_topk]
  52. topk_idxs = topk_idxs[:num_topk]
  53. # filter out the proposals with low confidence score
  54. keep_idxs = topk_scores > self.conf_thresh
  55. scores = topk_scores[keep_idxs]
  56. topk_idxs = topk_idxs[keep_idxs]
  57. labels = labels[topk_idxs]
  58. bboxes = box_pred_i[topk_idxs]
  59. else:
  60. # [M, C] -> [MC,]
  61. scores_i = cls_pred_i.sigmoid().flatten()
  62. # Keep top k top scoring indices only.
  63. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  64. # torch.sort is actually faster than .topk (at least on GPUs)
  65. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  66. topk_scores = predicted_prob[:num_topk]
  67. topk_idxs = topk_idxs[:num_topk]
  68. # filter out the proposals with low confidence score
  69. keep_idxs = topk_scores > self.conf_thresh
  70. scores = topk_scores[keep_idxs]
  71. topk_idxs = topk_idxs[keep_idxs]
  72. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  73. labels = topk_idxs % self.num_classes
  74. bboxes = box_pred_i[anchor_idxs]
  75. all_scores.append(scores)
  76. all_labels.append(labels)
  77. all_bboxes.append(bboxes)
  78. scores = torch.cat(all_scores, dim=0)
  79. labels = torch.cat(all_labels, dim=0)
  80. bboxes = torch.cat(all_bboxes, dim=0)
  81. # to cpu & numpy
  82. scores = scores.cpu().numpy()
  83. labels = labels.cpu().numpy()
  84. bboxes = bboxes.cpu().numpy()
  85. # nms
  86. scores, labels, bboxes = multiclass_nms(
  87. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  88. return bboxes, scores, labels
  89. def forward(self, x):
  90. pyramid_feats = self.backbone(x)
  91. pyramid_feats = self.pafpn(pyramid_feats)
  92. outputs = self.det_head(pyramid_feats)
  93. outputs['image_size'] = [x.shape[2], x.shape[3]]
  94. if not self.training:
  95. all_cls_preds = outputs['pred_cls']
  96. all_box_preds = outputs['pred_box']
  97. # post process
  98. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  99. outputs = {
  100. "scores": scores,
  101. "labels": labels,
  102. "bboxes": bboxes
  103. }
  104. return outputs