yolo_augment.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. import random
  2. import cv2
  3. import math
  4. import numpy as np
  5. import torch
  6. import torchvision.transforms.functional as F
  7. # ------------------------- Basic augmentations -------------------------
  8. ## Spatial transform
  9. def random_perspective(image,
  10. targets=(),
  11. degrees=10,
  12. translate=.1,
  13. scale=[0.1, 2.0],
  14. shear=10,
  15. perspective=0.0,
  16. border=(0, 0)):
  17. # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
  18. # targets = [cls, xyxy]
  19. height = image.shape[0] + border[0] * 2 # shape(h,w,c)
  20. width = image.shape[1] + border[1] * 2
  21. # Center
  22. C = np.eye(3)
  23. C[0, 2] = -image.shape[1] / 2 # x translation (pixels)
  24. C[1, 2] = -image.shape[0] / 2 # y translation (pixels)
  25. # Perspective
  26. P = np.eye(3)
  27. P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
  28. P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
  29. # Rotation and Scale
  30. R = np.eye(3)
  31. a = random.uniform(-degrees, degrees)
  32. # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
  33. s = random.uniform(scale[0], scale[1])
  34. # s = 2 ** random.uniform(-scale, scale)
  35. R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
  36. # Shear
  37. S = np.eye(3)
  38. S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
  39. S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
  40. # Translation
  41. T = np.eye(3)
  42. T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
  43. T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
  44. # Combined rotation matrix
  45. M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
  46. if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
  47. if perspective:
  48. image = cv2.warpPerspective(image, M, dsize=(width, height), borderValue=(114, 114, 114))
  49. else: # affine
  50. image = cv2.warpAffine(image, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
  51. # Transform label coordinates
  52. n = len(targets)
  53. if n:
  54. new = np.zeros((n, 4))
  55. # warp boxes
  56. xy = np.ones((n * 4, 3))
  57. xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
  58. xy = xy @ M.T # transform
  59. xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
  60. # create new boxes
  61. x = xy[:, [0, 2, 4, 6]]
  62. y = xy[:, [1, 3, 5, 7]]
  63. new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
  64. # clip
  65. new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
  66. new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
  67. targets[:, 1:5] = new
  68. return image, targets
  69. ## Color transform
  70. def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
  71. r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
  72. hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
  73. dtype = img.dtype # uint8
  74. x = np.arange(0, 256, dtype=np.int16)
  75. lut_hue = ((x * r[0]) % 180).astype(dtype)
  76. lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
  77. lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
  78. img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
  79. cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
  80. return img
  81. # ------------------------- Preprocessers -------------------------
  82. ## YOLO-style Transform for Train
  83. class YOLOAugmentation(object):
  84. def __init__(self,
  85. img_size=640,
  86. affine_params=None,
  87. pixel_mean = [0., 0., 0.],
  88. pixel_std = [255., 255., 255.],
  89. ):
  90. # Basic parameters
  91. self.img_size = img_size
  92. self.pixel_mean = pixel_mean
  93. self.pixel_std = pixel_std
  94. self.affine_params = affine_params
  95. self.color_format = 'bgr'
  96. def __call__(self, image, target, mosaic=False):
  97. # --------------- Resize image ---------------
  98. orig_h, orig_w = image.shape[:2]
  99. ratio = self.img_size / max(orig_h, orig_w)
  100. if ratio != 1:
  101. new_shape = (int(round(orig_w * ratio)), int(round(orig_h * ratio)))
  102. image = cv2.resize(image, new_shape)
  103. img_h, img_w = image.shape[:2]
  104. # rescale bbox
  105. target["boxes"][..., [0, 2]] = target["boxes"][..., [0, 2]] / orig_w * img_w
  106. target["boxes"][..., [1, 3]] = target["boxes"][..., [1, 3]] / orig_h * img_h
  107. # --------------- HSV augmentations ---------------
  108. image = augment_hsv(image,
  109. hgain=self.affine_params['hsv_h'],
  110. sgain=self.affine_params['hsv_s'],
  111. vgain=self.affine_params['hsv_v'])
  112. # --------------- Spatial augmentations ---------------
  113. ## Random perspective
  114. if not mosaic:
  115. # spatial augment
  116. target_ = np.concatenate((target['labels'][..., None], target['boxes']), axis=-1)
  117. image, target_ = random_perspective(image, target_,
  118. degrees = self.affine_params['degrees'],
  119. translate = self.affine_params['translate'],
  120. scale = self.affine_params['scale'],
  121. shear = self.affine_params['shear'],
  122. perspective = self.affine_params['perspective']
  123. )
  124. target['boxes'] = target_[..., 1:]
  125. target['labels'] = target_[..., 0]
  126. ## Random flip
  127. if random.random() < 0.5:
  128. w = image.shape[1]
  129. image = np.fliplr(image).copy()
  130. boxes = target['boxes'].copy()
  131. boxes[..., [0, 2]] = w - boxes[..., [2, 0]]
  132. target["boxes"] = boxes
  133. # --------------- To torch.Tensor ---------------
  134. image = torch.as_tensor(image).permute(2, 0, 1).contiguous()
  135. if target is not None:
  136. target["boxes"] = torch.as_tensor(target["boxes"]).float()
  137. target["labels"] = torch.as_tensor(target["labels"]).long()
  138. # --------------- Pad Image ---------------
  139. img_h0, img_w0 = image.shape[1:]
  140. pad_image = torch.ones([image.size(0), self.img_size, self.img_size]).float() * 114.
  141. pad_image[:, :img_h0, :img_w0] = image
  142. # --------------- Normalize ---------------
  143. pad_image = F.normalize(pad_image, self.pixel_mean, self.pixel_std)
  144. return pad_image, target, ratio
  145. ## YOLO-style Transform for Eval
  146. class YOLOBaseTransform(object):
  147. def __init__(self,
  148. img_size=640,
  149. max_stride=32,
  150. pixel_mean = [0., 0., 0.],
  151. pixel_std = [255., 255., 255.],
  152. ):
  153. self.img_size = img_size
  154. self.max_stride = max_stride
  155. self.pixel_mean = pixel_mean
  156. self.pixel_std = pixel_std
  157. self.color_format = 'bgr'
  158. def __call__(self, image, target=None, mosaic=False):
  159. # --------------- Resize image ---------------
  160. orig_h, orig_w = image.shape[:2]
  161. ratio = self.img_size / max(orig_h, orig_w)
  162. if ratio != 1:
  163. new_shape = (int(round(orig_w * ratio)), int(round(orig_h * ratio)))
  164. image = cv2.resize(image, new_shape)
  165. img_h, img_w = image.shape[:2]
  166. # --------------- Rescale bboxes ---------------
  167. if target is not None:
  168. # rescale bbox
  169. target["boxes"][..., [0, 2]] = target["boxes"][..., [0, 2]] / orig_w * img_w
  170. target["boxes"][..., [1, 3]] = target["boxes"][..., [1, 3]] / orig_h * img_h
  171. # --------------- To torch.Tensor ---------------
  172. image = torch.as_tensor(image).permute(2, 0, 1).contiguous()
  173. if target is not None:
  174. target["boxes"] = torch.as_tensor(target["boxes"]).float()
  175. target["labels"] = torch.as_tensor(target["labels"]).long()
  176. # --------------- Pad image ---------------
  177. img_h0, img_w0 = image.shape[1:]
  178. dh = img_h0 % self.max_stride
  179. dw = img_w0 % self.max_stride
  180. dh = dh if dh == 0 else self.max_stride - dh
  181. dw = dw if dw == 0 else self.max_stride - dw
  182. pad_img_h = img_h0 + dh
  183. pad_img_w = img_w0 + dw
  184. pad_image = torch.ones([image.size(0), pad_img_h, pad_img_w]).float() * 114.
  185. pad_image[:, :img_h0, :img_w0] = image
  186. # --------------- Normalize ---------------
  187. pad_image = F.normalize(pad_image, self.pixel_mean, self.pixel_std)
  188. return pad_image, target, ratio
  189. if __name__ == "__main__":
  190. image_path = "voc_image.jpg"
  191. is_train = True
  192. affine_params = {
  193. 'degrees': 0.0,
  194. 'translate': 0.2,
  195. 'scale': [0.1, 2.0],
  196. 'shear': 0.0,
  197. 'perspective': 0.0,
  198. 'hsv_h': 0.015,
  199. 'hsv_s': 0.7,
  200. 'hsv_v': 0.4,
  201. }
  202. if is_train:
  203. ssd_augment = YOLOAugmentation(img_size=416,
  204. affine_params=affine_params,
  205. pixel_mean=[0., 0., 0.],
  206. pixel_std=[255., 255., 255.],
  207. )
  208. else:
  209. ssd_augment = YOLOBaseTransform(img_size=416,
  210. max_stride=32,
  211. pixel_mean=[0., 0., 0.],
  212. pixel_std=[255., 255., 255.],
  213. )
  214. # 读取图像数据
  215. orig_image = cv2.imread(image_path)
  216. target = {
  217. "boxes": np.array([[86, 96, 256, 425], [132, 71, 243, 282]], dtype=np.float32),
  218. "labels": np.array([12, 14], dtype=np.int32),
  219. }
  220. # 绘制原始数据的边界框
  221. image_copy = orig_image.copy()
  222. for box in target["boxes"]:
  223. x1, y1, x2, y2 = box
  224. image_copy = cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), [0, 0, 255], 2)
  225. cv2.imshow("original image", image_copy)
  226. cv2.waitKey(0)
  227. # 展示预处理后的输入图像数据和标签信息
  228. image_aug, target_aug, _ = ssd_augment(orig_image, target)
  229. # [c, h, w] -> [h, w, c]
  230. image_aug = image_aug.permute(1, 2, 0).contiguous().numpy()
  231. image_aug = np.clip(image_aug * 255, 0, 255).astype(np.uint8)
  232. image_aug = image_aug.copy()
  233. # 绘制处理后的边界框
  234. for box in target_aug["boxes"]:
  235. x1, y1, x2, y2 = box
  236. image_aug = cv2.rectangle(image_aug, (int(x1), int(y1)), (int(x2), int(y2)), [0, 0, 255], 2)
  237. cv2.imshow("processed image", image_aug)
  238. cv2.waitKey(0)