yolox_config.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. # yolo Config
  2. def build_yolox_config(args):
  3. if args.model == 'yolox_n':
  4. return YoloxNConfig()
  5. elif args.model == 'yolox_s':
  6. return YoloxSConfig()
  7. elif args.model == 'yolox_m':
  8. return YoloxMConfig()
  9. elif args.model == 'yolox_l':
  10. return YoloxLConfig()
  11. elif args.model == 'yolox_':
  12. return YoloxXConfig()
  13. else:
  14. raise NotImplementedError("No config for model: {}".format(args.model))
  15. # YOLOx-Base config
  16. class YoloxBaseConfig(object):
  17. def __init__(self) -> None:
  18. # ---------------- Model config ----------------
  19. self.width = 1.0
  20. self.depth = 1.0
  21. self.out_stride = [8, 16, 32]
  22. self.max_stride = 32
  23. self.num_levels = 3
  24. self.model_scale = "l"
  25. ## Backbone
  26. self.use_pretrained = True
  27. ## Head
  28. self.head_dim = 256
  29. self.num_cls_head = 2
  30. self.num_reg_head = 2
  31. # ---------------- Post-process config ----------------
  32. ## Post process
  33. self.val_topk = 1000
  34. self.val_conf_thresh = 0.001
  35. self.val_nms_thresh = 0.7
  36. self.test_topk = 100
  37. self.test_conf_thresh = 0.4
  38. self.test_nms_thresh = 0.5
  39. # ---------------- Assignment config ----------------
  40. ## Matcher
  41. self.ota_center_sampling_radius = 2.5
  42. self.ota_topk_candidate = 10
  43. ## Loss weight
  44. self.loss_obj = 1.0
  45. self.loss_cls = 1.0
  46. self.loss_box = 5.0
  47. # ---------------- ModelEMA config ----------------
  48. self.use_ema = True
  49. self.ema_decay = 0.9998
  50. self.ema_tau = 2000
  51. # ---------------- Optimizer config ----------------
  52. self.trainer = 'yolo'
  53. self.optimizer = 'adamw'
  54. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  55. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  56. self.batch_size_base = 64
  57. self.momentum = 0.9
  58. self.weight_decay = 0.05
  59. self.clip_max_norm = 35.0
  60. self.warmup_bias_lr = 0.1
  61. self.warmup_momentum = 0.8
  62. # ---------------- Lr Scheduler config ----------------
  63. self.warmup_epoch = 3
  64. self.lr_scheduler = "cosine"
  65. self.max_epoch = 300
  66. self.eval_epoch = 10
  67. self.no_aug_epoch = 20
  68. # ---------------- Data process config ----------------
  69. self.aug_type = 'yolo'
  70. self.mosaic_prob = 1.0
  71. self.mixup_prob = 0.0
  72. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  73. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  74. ## Pixel mean & std
  75. self.pixel_mean = [0., 0., 0.]
  76. self.pixel_std = [255., 255., 255.]
  77. ## Transforms
  78. self.train_img_size = 640
  79. self.test_img_size = 640
  80. self.affine_params = {
  81. 'degrees': 0.0,
  82. 'translate': 0.2,
  83. 'scale': [0.1, 2.0],
  84. 'shear': 0.0,
  85. 'perspective': 0.0,
  86. 'hsv_h': 0.015,
  87. 'hsv_s': 0.7,
  88. 'hsv_v': 0.4,
  89. }
  90. def print_config(self):
  91. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  92. for k, v in config_dict.items():
  93. print("{} : {}".format(k, v))
  94. # YOLOx-N
  95. class YoloxNConfig(YoloxBaseConfig):
  96. def __init__(self) -> None:
  97. super().__init__()
  98. # ---------------- Model config ----------------
  99. self.width = 0.25
  100. self.depth = 0.34
  101. self.model_scale = "n"
  102. # ---------------- Data process config ----------------
  103. self.mosaic_prob = 1.0
  104. self.mixup_prob = 0.0
  105. self.copy_paste = 0.5
  106. # YOLOx-S
  107. class YoloxSConfig(YoloxBaseConfig):
  108. def __init__(self) -> None:
  109. super().__init__()
  110. # ---------------- Model config ----------------
  111. self.width = 0.50
  112. self.depth = 0.34
  113. self.model_scale = "s"
  114. # ---------------- Data process config ----------------
  115. self.mosaic_prob = 1.0
  116. self.mixup_prob = 0.0
  117. self.copy_paste = 0.5
  118. # YOLOx-M
  119. class YoloxMConfig(YoloxBaseConfig):
  120. def __init__(self) -> None:
  121. super().__init__()
  122. # ---------------- Model config ----------------
  123. self.width = 0.75
  124. self.depth = 0.67
  125. self.model_scale = "m"
  126. # ---------------- Data process config ----------------
  127. self.mosaic_prob = 1.0
  128. self.mixup_prob = 0.1
  129. self.copy_paste = 0.5
  130. # YOLOx-L
  131. class YoloxLConfig(YoloxBaseConfig):
  132. def __init__(self) -> None:
  133. super().__init__()
  134. # ---------------- Model config ----------------
  135. self.width = 1.0
  136. self.depth = 1.0
  137. self.model_scale = "l"
  138. # ---------------- Data process config ----------------
  139. self.mosaic_prob = 1.0
  140. self.mixup_prob = 0.1
  141. self.copy_paste = 0.5
  142. # YOLOx-X
  143. class YoloxXConfig(YoloxBaseConfig):
  144. def __init__(self) -> None:
  145. super().__init__()
  146. # ---------------- Model config ----------------
  147. self.width = 1.25
  148. self.depth = 1.34
  149. self.model_scale = "x"
  150. # ---------------- Data process config ----------------
  151. self.mosaic_prob = 1.0
  152. self.mixup_prob = 0.1
  153. self.copy_paste = 0.5