yolov8_config.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. # yolo Config
  2. def build_yolov8_config(args):
  3. if args.model == 'yolov8_n':
  4. return Yolov8NConfig()
  5. elif args.model == 'yolov8_s':
  6. return Yolov8SConfig()
  7. elif args.model == 'yolov8_m':
  8. return Yolov8MConfig()
  9. elif args.model == 'yolov8_l':
  10. return Yolov8LConfig()
  11. elif args.model == 'yolov8_x':
  12. return Yolov8XConfig()
  13. else:
  14. raise NotImplementedError("No config for model: {}".format(args.model))
  15. # YOLOv8-Base config
  16. class Yolov8BaseConfig(object):
  17. def __init__(self) -> None:
  18. # ---------------- Model config ----------------
  19. self.model_scale = "l"
  20. self.width = 1.0
  21. self.depth = 1.0
  22. self.ratio = 1.0
  23. self.reg_max = 16
  24. self.out_stride = [8, 16, 32]
  25. self.max_stride = 32
  26. ## Backbone
  27. self.use_pretrained = True
  28. ## Head
  29. self.num_cls_head = 2
  30. self.num_reg_head = 2
  31. # ---------------- Post-process config ----------------
  32. ## Post process
  33. self.val_topk = 1000
  34. self.val_conf_thresh = 0.001
  35. self.val_nms_thresh = 0.7
  36. self.test_topk = 100
  37. self.test_conf_thresh = 0.2
  38. self.test_nms_thresh = 0.5
  39. # ---------------- Assignment config ----------------
  40. ## Matcher
  41. self.tal_topk_candidates = 10
  42. self.tal_alpha = 0.5
  43. self.tal_beta = 6.0
  44. ## Loss weight
  45. self.loss_cls = 0.5
  46. self.loss_box = 7.5
  47. self.loss_dfl = 1.5
  48. # ---------------- ModelEMA config ----------------
  49. self.use_ema = True
  50. self.ema_decay = 0.9998
  51. self.ema_tau = 2000
  52. # ---------------- Optimizer config ----------------
  53. self.trainer = 'yolo'
  54. self.optimizer = 'adamw'
  55. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  56. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  57. self.batch_size_base = 64
  58. self.momentum = 0.9
  59. self.weight_decay = 0.05
  60. self.clip_max_norm = 35.0
  61. self.warmup_bias_lr = 0.1
  62. self.warmup_momentum = 0.8
  63. # ---------------- Lr Scheduler config ----------------
  64. self.warmup_epoch = 3
  65. self.lr_scheduler = "cosine"
  66. self.max_epoch = 500
  67. self.eval_epoch = 10
  68. self.no_aug_epoch = 20
  69. # ---------------- Data process config ----------------
  70. self.aug_type = 'yolo'
  71. self.mosaic_prob = 0.0
  72. self.mixup_prob = 0.0
  73. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  74. self.multi_scale = [0.5, 1.5] # multi scale: [img_size * 0.5, img_size * 1.5]
  75. ## Pixel mean & std
  76. self.pixel_mean = [0., 0., 0.]
  77. self.pixel_std = [255., 255., 255.]
  78. ## Transforms
  79. self.train_img_size = 640
  80. self.test_img_size = 640
  81. self.affine_params = {
  82. 'degrees': 0.0,
  83. 'translate': 0.2,
  84. 'scale': [0.1, 2.0],
  85. 'shear': 0.0,
  86. 'perspective': 0.0,
  87. 'hsv_h': 0.015,
  88. 'hsv_s': 0.7,
  89. 'hsv_v': 0.4,
  90. }
  91. def print_config(self):
  92. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  93. for k, v in config_dict.items():
  94. print("{} : {}".format(k, v))
  95. # YOLOv8-N
  96. class Yolov8NConfig(Yolov8BaseConfig):
  97. def __init__(self) -> None:
  98. super().__init__()
  99. # ---------------- Model config ----------------
  100. self.model_scale = "n"
  101. self.width = 0.25
  102. self.depth = 0.34
  103. self.ratio = 2.0
  104. # ---------------- Data process config ----------------
  105. self.mosaic_prob = 1.0
  106. self.mixup_prob = 0.0
  107. self.copy_paste = 0.0
  108. # YOLOv8-S
  109. class Yolov8SConfig(Yolov8BaseConfig):
  110. def __init__(self) -> None:
  111. super().__init__()
  112. # ---------------- Model config ----------------
  113. self.model_scale = "s"
  114. self.width = 0.50
  115. self.depth = 0.34
  116. self.ratio = 2.0
  117. # ---------------- Data process config ----------------
  118. self.mosaic_prob = 1.0
  119. self.mixup_prob = 0.0
  120. self.copy_paste = 0.0
  121. # YOLOv8-M
  122. class Yolov8MConfig(Yolov8BaseConfig):
  123. def __init__(self) -> None:
  124. super().__init__()
  125. # ---------------- Model config ----------------
  126. self.model_scale = "m"
  127. self.width = 0.75
  128. self.depth = 0.67
  129. self.ratio = 1.5
  130. # ---------------- Data process config ----------------
  131. self.mosaic_prob = 1.0
  132. self.mixup_prob = 0.1
  133. self.copy_paste = 0.0
  134. # YOLOv8-L
  135. class Yolov8LConfig(Yolov8BaseConfig):
  136. def __init__(self) -> None:
  137. super().__init__()
  138. # ---------------- Model config ----------------
  139. self.model_scale = "l"
  140. self.width = 1.0
  141. self.depth = 1.0
  142. self.ratio = 1.0
  143. # ---------------- Data process config ----------------
  144. self.mosaic_prob = 1.0
  145. self.mixup_prob = 0.1
  146. self.copy_paste = 0.0
  147. # YOLOv8-X
  148. class Yolov8XConfig(Yolov8BaseConfig):
  149. def __init__(self) -> None:
  150. super().__init__()
  151. # ---------------- Model config ----------------
  152. self.model_scale = "x"
  153. self.width = 1.25
  154. self.depth = 1.0
  155. self.ratio = 1.0
  156. # ---------------- Data process config ----------------
  157. self.mosaic_prob = 1.0
  158. self.mixup_prob = 0.1
  159. self.copy_paste = 0.0