yolov5_config.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. # yolo Config
  2. def build_yolov5_config(args):
  3. if args.model == 'yolov5_n':
  4. return Yolov5NConfig()
  5. elif args.model == 'yolov5_s':
  6. return Yolov5SConfig()
  7. elif args.model == 'yolov5_m':
  8. return Yolov5MConfig()
  9. elif args.model == 'yolov5_l':
  10. return Yolov5LConfig()
  11. elif args.model == 'yolov5_x':
  12. return Yolov5XConfig()
  13. else:
  14. raise NotImplementedError("No config for model: {}".format(args.model))
  15. # YOLOv5-Base config
  16. class Yolov5BaseConfig(object):
  17. def __init__(self) -> None:
  18. # ---------------- Model config ----------------
  19. self.width = 1.0
  20. self.depth = 1.0
  21. self.out_stride = [8, 16, 32]
  22. self.max_stride = 32
  23. self.num_levels = 3
  24. self.model_scale = "l"
  25. ## Backbone
  26. self.use_pretrained = True
  27. ## Head
  28. self.head_dim = 256
  29. self.num_cls_head = 2
  30. self.num_reg_head = 2
  31. self.anchor_size = {0: [[10, 13], [16, 30], [33, 23]],
  32. 1: [[30, 61], [62, 45], [59, 119]],
  33. 2: [[116, 90], [156, 198], [373, 326]]}
  34. # ---------------- Post-process config ----------------
  35. ## Post process
  36. self.val_topk = 1000
  37. self.val_conf_thresh = 0.001
  38. self.val_nms_thresh = 0.7
  39. self.test_topk = 100
  40. self.test_conf_thresh = 0.4
  41. self.test_nms_thresh = 0.5
  42. # ---------------- Assignment config ----------------
  43. ## Matcher
  44. self.anchor_thresh = 4.0
  45. ## Loss weight
  46. self.loss_obj = 1.0
  47. self.loss_cls = 1.0
  48. self.loss_box = 5.0
  49. # ---------------- ModelEMA config ----------------
  50. self.use_ema = True
  51. self.ema_decay = 0.9998
  52. self.ema_tau = 2000
  53. # ---------------- Optimizer config ----------------
  54. self.trainer = 'yolo'
  55. self.optimizer = 'adamw'
  56. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  57. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  58. self.batch_size_base = 64
  59. self.momentum = 0.9
  60. self.weight_decay = 0.05
  61. self.clip_max_norm = 35.0
  62. self.warmup_bias_lr = 0.1
  63. self.warmup_momentum = 0.8
  64. # ---------------- Lr Scheduler config ----------------
  65. self.warmup_epoch = 3
  66. self.lr_scheduler = "cosine"
  67. self.max_epoch = 300
  68. self.eval_epoch = 10
  69. self.no_aug_epoch = 20
  70. # ---------------- Data process config ----------------
  71. self.aug_type = 'yolo'
  72. self.mosaic_prob = 1.0
  73. self.mixup_prob = 0.15
  74. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  75. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  76. ## Pixel mean & std
  77. self.pixel_mean = [0., 0., 0.]
  78. self.pixel_std = [255., 255., 255.]
  79. ## Transforms
  80. self.train_img_size = 640
  81. self.test_img_size = 640
  82. self.affine_params = {
  83. 'degrees': 0.0,
  84. 'translate': 0.2,
  85. 'scale': [0.1, 2.0],
  86. 'shear': 0.0,
  87. 'perspective': 0.0,
  88. 'hsv_h': 0.015,
  89. 'hsv_s': 0.7,
  90. 'hsv_v': 0.4,
  91. }
  92. def print_config(self):
  93. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  94. for k, v in config_dict.items():
  95. print("{} : {}".format(k, v))
  96. # YOLOv5-N
  97. class Yolov5NConfig(Yolov5BaseConfig):
  98. def __init__(self) -> None:
  99. super().__init__()
  100. # ---------------- Model config ----------------
  101. self.width = 0.25
  102. self.depth = 0.34
  103. self.model_scale = "n"
  104. # ---------------- Data process config ----------------
  105. self.mosaic_prob = 1.0
  106. self.mixup_prob = 0.0
  107. self.copy_paste = 0.0
  108. # YOLOv5-S
  109. class Yolov5SConfig(Yolov5BaseConfig):
  110. def __init__(self) -> None:
  111. super().__init__()
  112. # ---------------- Model config ----------------
  113. self.width = 0.50
  114. self.depth = 0.34
  115. self.model_scale = "s"
  116. # ---------------- Data process config ----------------
  117. self.mosaic_prob = 1.0
  118. self.mixup_prob = 0.0
  119. self.copy_paste = 0.0
  120. # YOLOv5-M
  121. class Yolov5MConfig(Yolov5BaseConfig):
  122. def __init__(self) -> None:
  123. super().__init__()
  124. # ---------------- Model config ----------------
  125. self.width = 0.75
  126. self.depth = 0.67
  127. self.model_scale = "m"
  128. # ---------------- Data process config ----------------
  129. self.mosaic_prob = 1.0
  130. self.mixup_prob = 0.1
  131. self.copy_paste = 0.0
  132. # YOLOv5-L
  133. class Yolov5LConfig(Yolov5BaseConfig):
  134. def __init__(self) -> None:
  135. super().__init__()
  136. # ---------------- Model config ----------------
  137. self.width = 1.0
  138. self.depth = 1.0
  139. self.model_scale = "l"
  140. # ---------------- Data process config ----------------
  141. self.mosaic_prob = 1.0
  142. self.mixup_prob = 0.1
  143. self.copy_paste = 0.0
  144. # YOLOv5-X
  145. class Yolov5XConfig(Yolov5BaseConfig):
  146. def __init__(self) -> None:
  147. super().__init__()
  148. # ---------------- Model config ----------------
  149. self.width = 1.25
  150. self.depth = 1.34
  151. self.model_scale = "x"
  152. # ---------------- Data process config ----------------
  153. self.mosaic_prob = 1.0
  154. self.mixup_prob = 0.1
  155. self.copy_paste = 0.0