yolov10_config.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. # yolo Config
  2. def build_yolov10_config(args):
  3. if args.model == 'yolov10_n':
  4. return Yolov10NConfig()
  5. elif args.model == 'yolov10_s':
  6. return Yolov10SConfig()
  7. elif args.model == 'yolov10_m':
  8. return Yolov10MConfig()
  9. elif args.model == 'yolov10_l':
  10. return Yolov10LConfig()
  11. elif args.model == 'yolov10_x':
  12. return Yolov10XConfig()
  13. else:
  14. raise NotImplementedError("No config for model: {}".format(args.model))
  15. # YOLOv10-Base config
  16. class Yolov10BaseConfig(object):
  17. def __init__(self) -> None:
  18. # ---------------- Model config ----------------
  19. self.model_scale = "l"
  20. self.width = 1.0
  21. self.depth = 1.0
  22. self.ratio = 1.0
  23. self.reg_max = 16
  24. self.out_stride = [8, 16, 32]
  25. self.max_stride = 32
  26. ## Head
  27. self.num_cls_head = 2
  28. self.num_reg_head = 2
  29. # ---------------- Post-process config ----------------
  30. ## Post process
  31. self.val_topk = 100 # per level
  32. self.val_conf_thresh = 0.2
  33. self.val_nms_thresh = 0.7
  34. self.test_topk = 100 # per level
  35. self.test_conf_thresh = 0.2
  36. self.test_nms_thresh = 0.5
  37. # ---------------- Assignment config ----------------
  38. ## Matcher
  39. self.tal_topk_candidates = 10
  40. self.tal_alpha = 0.5
  41. self.tal_beta = 6.0
  42. ## Loss weight
  43. self.loss_cls = 0.5
  44. self.loss_box = 7.5
  45. self.loss_dfl = 1.5
  46. # ---------------- ModelEMA config ----------------
  47. self.use_ema = True
  48. self.ema_decay = 0.9998
  49. self.ema_tau = 2000
  50. # ---------------- Optimizer config ----------------
  51. self.trainer = 'yolo'
  52. self.optimizer = 'adamw'
  53. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  54. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  55. self.batch_size_base = 64
  56. self.momentum = 0.9
  57. self.weight_decay = 0.05
  58. self.clip_max_norm = 35.0
  59. self.warmup_bias_lr = 0.1
  60. self.warmup_momentum = 0.8
  61. # ---------------- Lr Scheduler config ----------------
  62. self.warmup_epoch = 3
  63. self.lr_scheduler = "cosine"
  64. self.max_epoch = 500
  65. self.eval_epoch = 10
  66. self.no_aug_epoch = 20
  67. # ---------------- Data process config ----------------
  68. self.aug_type = 'yolo'
  69. self.mosaic_prob = 0.0
  70. self.mixup_prob = 0.0
  71. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  72. self.multi_scale = [0.5, 1.5] # multi scale: [img_size * 0.5, img_size * 1.5]
  73. ## Pixel mean & std
  74. self.pixel_mean = [0., 0., 0.]
  75. self.pixel_std = [255., 255., 255.]
  76. ## Transforms
  77. self.train_img_size = 640
  78. self.test_img_size = 640
  79. self.affine_params = {
  80. 'degrees': 0.0,
  81. 'translate': 0.2,
  82. 'scale': [0.1, 2.0],
  83. 'shear': 0.0,
  84. 'perspective': 0.0,
  85. 'hsv_h': 0.015,
  86. 'hsv_s': 0.7,
  87. 'hsv_v': 0.4,
  88. }
  89. def print_config(self):
  90. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  91. for k, v in config_dict.items():
  92. print("{} : {}".format(k, v))
  93. # YOLOv10-N
  94. class Yolov10NConfig(Yolov10BaseConfig):
  95. def __init__(self) -> None:
  96. super().__init__()
  97. # ---------------- Model config ----------------
  98. self.model_scale = "n"
  99. self.width = 0.25
  100. self.depth = 0.34
  101. self.ratio = 2.0
  102. # ---------------- Data process config ----------------
  103. self.mosaic_prob = 1.0
  104. self.mixup_prob = 0.0
  105. self.copy_paste = 0.0
  106. # YOLOv10-S
  107. class Yolov10SConfig(Yolov10BaseConfig):
  108. def __init__(self) -> None:
  109. super().__init__()
  110. # ---------------- Model config ----------------
  111. self.model_scale = "s"
  112. self.width = 0.50
  113. self.depth = 0.34
  114. self.ratio = 2.0
  115. # ---------------- Data process config ----------------
  116. self.mosaic_prob = 1.0
  117. self.mixup_prob = 0.0
  118. self.copy_paste = 0.0
  119. # YOLOv10-M
  120. class Yolov10MConfig(Yolov10BaseConfig):
  121. def __init__(self) -> None:
  122. super().__init__()
  123. # ---------------- Model config ----------------
  124. self.model_scale = "m"
  125. self.width = 0.75
  126. self.depth = 0.67
  127. self.ratio = 1.5
  128. # ---------------- Data process config ----------------
  129. self.mosaic_prob = 1.0
  130. self.mixup_prob = 0.1
  131. self.copy_paste = 0.0
  132. # YOLOv10-L
  133. class Yolov10LConfig(Yolov10BaseConfig):
  134. def __init__(self) -> None:
  135. super().__init__()
  136. # ---------------- Model config ----------------
  137. self.model_scale = "l"
  138. self.width = 1.0
  139. self.depth = 1.0
  140. self.ratio = 1.0
  141. # ---------------- Data process config ----------------
  142. self.mosaic_prob = 1.0
  143. self.mixup_prob = 0.1
  144. self.copy_paste = 0.0
  145. # YOLOv10-X
  146. class Yolov10XConfig(Yolov10BaseConfig):
  147. def __init__(self) -> None:
  148. super().__init__()
  149. # ---------------- Model config ----------------
  150. self.model_scale = "x"
  151. self.width = 1.25
  152. self.depth = 1.0
  153. self.ratio = 1.0
  154. # ---------------- Data process config ----------------
  155. self.mosaic_prob = 1.0
  156. self.mixup_prob = 0.1
  157. self.copy_paste = 0.0