lr_scheduler.py 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. import numpy as np
  2. import torch
  3. # ------------------------- WarmUp LR Scheduler -------------------------
  4. ## Warmup LR Scheduler
  5. class LinearWarmUpLrScheduler(object):
  6. def __init__(self, wp_iter=500, base_lr=0.01, warmup_bias_lr=0.0):
  7. self.wp_iter = wp_iter
  8. self.base_lr = base_lr
  9. self.warmup_bias_lr = warmup_bias_lr
  10. def set_lr(self, optimizer, cur_lr):
  11. for param_group in optimizer.param_groups:
  12. param_group['lr'] = cur_lr
  13. def __call__(self, iter, optimizer):
  14. # warmup
  15. xi = [0, self.wp_iter]
  16. for j, x in enumerate(optimizer.param_groups):
  17. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  18. x['lr'] = np.interp(
  19. iter, xi, [self.warmup_bias_lr if j == 0 else 0.0, x['initial_lr']])
  20. # ------------------------- LR Scheduler -------------------------
  21. def build_lr_scheduler(cfg, optimizer, resume=None):
  22. print('==============================')
  23. print('LR Scheduler: {}'.format(cfg.lr_scheduler))
  24. if cfg.lr_scheduler == "step":
  25. lr_step = [cfg.max_epoch // 3, cfg.max_epoch // 3 * 2]
  26. lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=lr_step, gamma=0.1)
  27. elif cfg.lr_scheduler == "cosine":
  28. lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg.max_epoch - cfg.warmup_epoch - 1, eta_min=cfg.min_lr)
  29. else:
  30. raise NotImplementedError("Unknown lr scheduler: {}".format(cfg.lr_scheduler))
  31. if resume is not None and resume.lower() != "none":
  32. checkpoint = torch.load(resume)
  33. if 'lr_scheduler' in checkpoint.keys():
  34. print('--Load lr scheduler from the checkpoint: ', resume)
  35. # checkpoint state dict
  36. checkpoint_state_dict = checkpoint.pop("lr_scheduler")
  37. lr_scheduler.load_state_dict(checkpoint_state_dict)
  38. return lr_scheduler