| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- import os
- import cv2
- import time
- import numpy as np
- from pycocotools.coco import COCO
- try:
- from .data_augment.strong_augment import MosaicAugment, MixupAugment
- from .coco import COCODataset
- except:
- from data_augment.strong_augment import MosaicAugment, MixupAugment
- from coco import COCODataset
- custom_class_indexs = [0, 1, 2, 3, 4, 5, 6, 7, 8]
- custom_class_labels = ('bird', 'butterfly', 'cat', 'cow', 'dog', 'lion', 'person', 'pig', 'tiger', )
- class CustomDataset(COCODataset):
- def __init__(self,
- cfg,
- data_dir :str = None,
- transform = None,
- is_train :bool =False,
- ):
- # ----------- Basic parameters -----------
- self.image_set = "train" if is_train else "val"
- self.is_train = is_train
- self.num_classes = len(custom_class_labels)
- # ----------- Path parameters -----------
- self.data_dir = data_dir
- self.json_file = '{}.json'.format(self.image_set)
- # ----------- Data parameters -----------
- self.coco = COCO(os.path.join(self.data_dir, self.image_set, 'annotations', self.json_file))
- self.ids = self.coco.getImgIds()
- self.class_ids = sorted(self.coco.getCatIds())
- self.dataset_size = len(self.ids)
- self.class_labels = custom_class_labels
- self.class_indexs = custom_class_indexs
- # ----------- Transform parameters -----------
- self.transform = transform
- if is_train:
- if cfg.mosaic_prob == 0.:
- self.mosaic_augment = None
- else:
- self.mosaic_augment = MosaicAugment(cfg.train_img_size, cfg.affine_params, is_train)
- self.mosaic_prob = cfg.mosaic_prob
- if cfg.mixup_prob == 0.:
- self.mixup_augment = None
- else:
- self.mixup_augment = MixupAugment(cfg.train_img_size)
- self.mixup_prob = cfg.mixup_prob
- self.copy_paste = cfg.copy_paste
- else:
- self.mosaic_prob = 0.0
- self.mixup_prob = 0.0
- self.copy_paste = 0.0
- self.mosaic_augment = None
- self.mixup_augment = None
- print(' ============ Strong augmentation info. ============ ')
- print('use Mosaic Augmentation: {}'.format(self.mosaic_prob))
- print('use Mixup Augmentation: {}'.format(self.mixup_prob))
- print('use Copy-paste Augmentation: {}'.format(self.copy_paste))
- def pull_image(self, index):
- id_ = self.ids[index]
- im_ann = self.coco.loadImgs(id_)[0]
- img_file = os.path.join(
- self.data_dir, self.image_set, 'images', im_ann["file_name"])
- image = cv2.imread(img_file)
- return image, id_
- def pull_anno(self, index):
- img_id = self.ids[index]
- im_ann = self.coco.loadImgs(img_id)[0]
- anno_ids = self.coco.getAnnIds(imgIds=[int(img_id)], iscrowd=0)
- annotations = self.coco.loadAnns(anno_ids)
-
- # image infor
- width = im_ann['width']
- height = im_ann['height']
-
- #load a target
- bboxes = []
- labels = []
- for anno in annotations:
- if 'bbox' in anno and anno['area'] > 0:
- # bbox
- x1 = np.max((0, anno['bbox'][0]))
- y1 = np.max((0, anno['bbox'][1]))
- x2 = np.min((width - 1, x1 + np.max((0, anno['bbox'][2] - 1))))
- y2 = np.min((height - 1, y1 + np.max((0, anno['bbox'][3] - 1))))
- if x2 <= x1 or y2 <= y1:
- continue
- # class label
- cls_id = self.class_ids.index(anno['category_id'])
-
- bboxes.append([x1, y1, x2, y2])
- labels.append(cls_id)
- # guard against no boxes via resizing
- bboxes = np.array(bboxes).reshape(-1, 4)
- labels = np.array(labels).reshape(-1)
-
- return bboxes, labels
- if __name__ == "__main__":
- import time
- import argparse
- from build import build_transform
- parser = argparse.ArgumentParser(description='RT-ODLab')
- # opt
- parser.add_argument('--root', default='D:/python_work/dataset/AnimalDataset/',
- help='data root')
- parser.add_argument('--is_train', action="store_true", default=False,
- help='mixup augmentation.')
- parser.add_argument('--aug_type', default="yolo", type=str, choices=["yolo", "ssd"],
- help='yolo, ssd.')
-
- args = parser.parse_args()
- class YoloBaseConfig(object):
- def __init__(self) -> None:
- self.max_stride = 32
- # ---------------- Data process config ----------------
- self.box_format = 'xywh'
- self.normalize_coords = False
- self.mosaic_prob = 1.0
- self.mixup_prob = 0.15
- self.copy_paste = 0.3
- ## Pixel mean & std
- self.pixel_mean = [0., 0., 0.]
- self.pixel_std = [255., 255., 255.]
- ## Transforms
- self.train_img_size = 640
- self.test_img_size = 640
- self.use_ablu = True
- self.aug_type = 'yolo'
- self.affine_params = {
- 'degrees': 0.0,
- 'translate': 0.2,
- 'scale': [0.1, 2.0],
- 'shear': 0.0,
- 'perspective': 0.0,
- 'hsv_h': 0.015,
- 'hsv_s': 0.7,
- 'hsv_v': 0.4,
- }
- class SSDBaseConfig(object):
- def __init__(self) -> None:
- self.max_stride = 32
- # ---------------- Data process config ----------------
- self.box_format = 'xywh'
- self.normalize_coords = False
- self.mosaic_prob = 0.0
- self.mixup_prob = 0.0
- self.copy_paste = 0.0
- ## Pixel mean & std
- self.pixel_mean = [0., 0., 0.]
- self.pixel_std = [255., 255., 255.]
- ## Transforms
- self.train_img_size = 640
- self.test_img_size = 640
- self.aug_type = 'ssd'
- if args.aug_type == "yolo":
- cfg = YoloBaseConfig()
- elif args.aug_type == "ssd":
- cfg = SSDBaseConfig()
- transform = build_transform(cfg, args.is_train)
- dataset = CustomDataset(cfg, args.root, transform, args.is_train)
-
- np.random.seed(0)
- class_colors = [(np.random.randint(255),
- np.random.randint(255),
- np.random.randint(255)) for _ in range(80)]
- print('Data length: ', len(dataset))
- for i in range(1000):
- t0 = time.time()
- image, target, deltas = dataset.pull_item(i)
- print("Load data: {} s".format(time.time() - t0))
- # to numpy
- image = image.permute(1, 2, 0).numpy()
-
- # denormalize
- image = image * cfg.pixel_std + cfg.pixel_mean
- # rgb -> bgr
- if transform.color_format == 'rgb':
- image = image[..., (2, 1, 0)]
- # to uint8
- image = image.astype(np.uint8)
- image = image.copy()
- img_h, img_w = image.shape[:2]
- boxes = target["boxes"]
- labels = target["labels"]
- for box, label in zip(boxes, labels):
- if cfg.box_format == 'xyxy':
- x1, y1, x2, y2 = box
- elif cfg.box_format == 'xywh':
- cx, cy, bw, bh = box
- x1 = cx - 0.5 * bw
- y1 = cy - 0.5 * bh
- x2 = cx + 0.5 * bw
- y2 = cy + 0.5 * bh
-
- if cfg.normalize_coords:
- x1 *= img_w
- y1 *= img_h
- x2 *= img_w
- y2 *= img_h
- cls_id = int(label)
- color = class_colors[cls_id]
- # class name
- label = custom_class_labels[cls_id]
- image = cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
- # put the test on the bbox
- cv2.putText(image, label, (int(x1), int(y1 - 5)), 0, 0.5, color, 1, lineType=cv2.LINE_AA)
- cv2.imshow('gt', image)
- # cv2.imwrite(str(i)+'.jpg', img)
- cv2.waitKey(0)
|