yjh0410 87d5a72477 modify init il y a 1 an
..
README.md e00dfaae73 release YOLOv7AF-T il y a 1 an
build.py 961ec7aa41 add yolov7_af & remove yolov6 as it is ugly il y a 1 an
loss.py 961ec7aa41 add yolov7_af & remove yolov6 as it is ugly il y a 1 an
matcher.py 961ec7aa41 add yolov7_af & remove yolov6 as it is ugly il y a 1 an
yolov7_af.py 9d57404b71 modify yolov7 backbone il y a 1 an
yolov7_af_backbone.py 01c6f643a7 update il y a 1 an
yolov7_af_basic.py 87d5a72477 modify init il y a 1 an
yolov7_af_head.py f6aa3d89dd update il y a 1 an
yolov7_af_neck.py c304d2acc8 modify init il y a 1 an
yolov7_af_pafpn.py c304d2acc8 modify init il y a 1 an
yolov7_af_pred.py f6aa3d89dd update il y a 1 an

README.md

Anchor-free YOLOv7:

  • VOC
  • COCO
Model Batch Scale APval
0.5
Weight Logs
YOLOv7-AF-T 1xb16 640 80.6 ckpt log
  • For training, we train redesigned YOLOv7-AF with 500 epochs on COCO. We also use the gradient accumulation.
  • For data augmentation, we use the RandomAffine, RandomHSV, Mosaic and YOLOX's Mixup augmentation.
  • For optimizer, we use AdamW with weight decay of 0.05 and per image base lr of 0.001 / 64.
  • For learning rate scheduler, we use cosine decay scheduler.
  • For batch size, we set it to 16, and we also use the gradient accumulation to approximate batch size of 256.

Train YOLOv7-AF

Single GPU

Taking training YOLOv7-AF-S on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolov7_af_s -bs 16 --fp16 

Multi GPU

Taking training YOLOv7-AF-S on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov7_af_s -bs 16 --fp16 

Test YOLOv7-AF

Taking testing YOLOv7-AF-S on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolov7_af_s --weight path/to/yolov7.pth --show 

Evaluate YOLOv7-AF

Taking evaluating YOLOv7-AF-S on COCO-val as the example,

python eval.py --cuda -d coco --root path/to/coco -m yolov7_af_s --weight path/to/yolov7.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov7_af_s --weight path/to/weight --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov7_af_s --weight path/to/weight --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolov7_af_s --weight path/to/weight --show --gif
Model Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight Logs
YOLOv7-AF-T 1xb16 640 26.9 8.9