| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- import math
- import torch
- import torch.nn as nn
- try:
- from .yolof_basic import BasicConv
- except:
- from yolof_basic import BasicConv
-
- class YolofDecoder(nn.Module):
- def __init__(self, cfg, in_dim):
- super().__init__()
- # ------------------ Basic parameters -------------------
- self.cfg = cfg
- self.in_dim = in_dim
- self.stride = cfg.out_stride
- self.num_classes = cfg.num_classes
- self.num_cls_head = cfg.num_cls_head
- self.num_reg_head = cfg.num_reg_head
- # Anchor config
- self.anchor_size = torch.as_tensor(cfg.anchor_size)
- self.num_anchors = len(cfg.anchor_size)
- # ------------------ Network parameters -------------------
- ## cls head
- cls_heads = []
- self.cls_head_dim = cfg.head_dim
- for i in range(self.num_cls_head):
- if i == 0:
- cls_heads.append(
- BasicConv(in_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise)
- )
- else:
- cls_heads.append(
- BasicConv(self.cls_head_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise)
- )
- ## reg head
- reg_heads = []
- self.reg_head_dim = cfg.head_dim
- for i in range(self.num_reg_head):
- if i == 0:
- reg_heads.append(
- BasicConv(in_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise)
- )
- else:
- reg_heads.append(
- BasicConv(self.reg_head_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise)
- )
- self.cls_heads = nn.Sequential(*cls_heads)
- self.reg_heads = nn.Sequential(*reg_heads)
- # pred layer
- self.cls_pred = nn.Conv2d(self.cls_head_dim, self.num_classes * self.num_anchors, kernel_size=1)
- self.reg_pred = nn.Conv2d(self.reg_head_dim, 4 * self.num_anchors, kernel_size=1)
- self.init_weights()
-
- def init_weights(self):
- # Init bias
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- # cls pred
- b = self.cls_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred
- b = self.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- w = self.reg_pred.weight
- w.data.fill_(0.)
- self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
- def generate_anchors(self, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # 特征图的宽和高
- fmp_h, fmp_w = fmp_size
- # 生成网格的x坐标和y坐标
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # 将xy两部分的坐标拼起来:[H, W, 2] -> [HW, 2]
- anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA
- anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
- anchor_xy = anchor_xy.view(-1, 2) + 0.5
- anchor_xy *= self.stride
- # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA
- anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
- anchor_wh = anchor_wh.view(-1, 2)
- anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
- return anchors
-
- def decode_boxes(self, anchors, reg_pred):
- """
- anchors: (List[tensor]) [1, M, 4]
- reg_pred: (List[tensor]) [B, M, 4]
- """
- cxcy_pred = anchors[..., :2] + reg_pred[..., :2] * self.stride
- bwbh_pred = anchors[..., 2:] * torch.exp(reg_pred[..., 2:])
- pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
- pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- return box_pred
- def forward(self, x):
- # ------------------- Decoupled head -------------------
- cls_feats = self.cls_heads(x)
- reg_feats = self.reg_heads(x)
- # ------------------- Prediction -------------------
- cls_pred = self.cls_pred(cls_feats)
- reg_pred = self.reg_pred(reg_feats)
- # ------------------- Generate anchor box -------------------
- B, _, H, W = cls_pred.size()
- anchors = self.generate_anchors([H, W]) # [M, 4]
- anchors = anchors.to(cls_feats.device)
- # ------------------- Precoess preds -------------------
- # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C]
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
- ## Decode bbox
- box_pred = self.decode_boxes(anchors[None], reg_pred) # [B, M, 4]
- outputs = {"pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
- "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
- "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
- "stride": self.stride,
- "anchors": anchors, # (torch.Tensor) [M, C]
- }
- return outputs
|