yolof.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolof_backbone import YolofBackbone
  6. from .yolof_upsampler import YolofUpsampler
  7. from .yolof_encoder import YolofEncoder
  8. from .yolof_decoder import YolofDecoder
  9. # --------------- External components ---------------
  10. from utils.misc import multiclass_nms
  11. # Yolof
  12. class Yolof(nn.Module):
  13. def __init__(self,
  14. cfg,
  15. is_val = False,
  16. ) -> None:
  17. super(Yolof, self).__init__()
  18. # ---------------------- Basic setting ----------------------
  19. self.cfg = cfg
  20. self.num_classes = cfg.num_classes
  21. ## Post-process parameters
  22. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  23. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  24. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  25. self.no_multi_labels = False if is_val else True
  26. # ---------------------- Network Parameters ----------------------
  27. self.backbone = YolofBackbone(cfg)
  28. self.upsampler = YolofUpsampler(cfg, self.backbone.feat_dims[-1], cfg.head_dim)
  29. self.encoder = YolofEncoder(cfg, cfg.head_dim, cfg.head_dim)
  30. self.decoder = YolofDecoder(cfg, self.encoder.out_dim)
  31. def post_process(self, cls_preds, box_preds):
  32. """
  33. We process predictions at each scale hierarchically
  34. Input:
  35. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  36. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  37. Output:
  38. bboxes: np.array -> [N, 4]
  39. scores: np.array -> [N,]
  40. labels: np.array -> [N,]
  41. """
  42. all_scores = []
  43. all_labels = []
  44. all_bboxes = []
  45. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  46. cls_pred_i = cls_pred_i[0]
  47. box_pred_i = box_pred_i[0]
  48. if self.no_multi_labels:
  49. # [M,]
  50. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  51. # Keep top k top scoring indices only.
  52. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  53. # topk candidates
  54. predicted_prob, topk_idxs = scores.sort(descending=True)
  55. topk_scores = predicted_prob[:num_topk]
  56. topk_idxs = topk_idxs[:num_topk]
  57. # filter out the proposals with low confidence score
  58. keep_idxs = topk_scores > self.conf_thresh
  59. scores = topk_scores[keep_idxs]
  60. topk_idxs = topk_idxs[keep_idxs]
  61. labels = labels[topk_idxs]
  62. bboxes = box_pred_i[topk_idxs]
  63. else:
  64. # [M, C] -> [MC,]
  65. scores_i = cls_pred_i.sigmoid().flatten()
  66. # Keep top k top scoring indices only.
  67. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  68. # torch.sort is actually faster than .topk (at least on GPUs)
  69. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  70. topk_scores = predicted_prob[:num_topk]
  71. topk_idxs = topk_idxs[:num_topk]
  72. # filter out the proposals with low confidence score
  73. keep_idxs = topk_scores > self.conf_thresh
  74. scores = topk_scores[keep_idxs]
  75. topk_idxs = topk_idxs[keep_idxs]
  76. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  77. labels = topk_idxs % self.num_classes
  78. bboxes = box_pred_i[anchor_idxs]
  79. all_scores.append(scores)
  80. all_labels.append(labels)
  81. all_bboxes.append(bboxes)
  82. scores = torch.cat(all_scores, dim=0)
  83. labels = torch.cat(all_labels, dim=0)
  84. bboxes = torch.cat(all_bboxes, dim=0)
  85. # to cpu & numpy
  86. scores = scores.cpu().numpy()
  87. labels = labels.cpu().numpy()
  88. bboxes = bboxes.cpu().numpy()
  89. # nms
  90. scores, labels, bboxes = multiclass_nms(
  91. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  92. return bboxes, scores, labels
  93. def forward(self, x):
  94. # ---------------- Backbone ----------------
  95. pyramid_feats = self.backbone(x)
  96. # ---------------- Encoder ----------------
  97. x = self.upsampler(pyramid_feats[-1])
  98. x = self.encoder(x)
  99. # ---------------- Decoder ----------------
  100. outputs = self.decoder(x)
  101. outputs['image_size'] = [x.shape[2], x.shape[3]]
  102. if not self.training:
  103. all_cls_preds = [outputs['pred_cls'],]
  104. all_box_preds = [outputs['pred_box'],]
  105. # post process
  106. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  107. outputs = {
  108. "scores": scores,
  109. "labels": labels,
  110. "bboxes": bboxes
  111. }
  112. return outputs