matcher.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. # ---------------------------------------------------------------------
  2. # Copyright (c) Megvii Inc. All rights reserved.
  3. # ---------------------------------------------------------------------
  4. import math
  5. import torch
  6. import torch.nn.functional as F
  7. from utils.box_ops import *
  8. class SimOtaMatcher(object):
  9. def __init__(self, num_classes, soft_center_radius=3.0, topk_candidates=13):
  10. self.num_classes = num_classes
  11. self.soft_center_radius = soft_center_radius
  12. self.topk_candidates = topk_candidates
  13. @torch.no_grad()
  14. def __call__(self,
  15. stride,
  16. anchors,
  17. pred_cls,
  18. pred_box,
  19. gt_labels,
  20. gt_bboxes):
  21. # List[F, M, 2] -> [M, 2]
  22. num_gt = len(gt_labels)
  23. # check gt
  24. if num_gt == 0 or gt_bboxes.max().item() == 0.:
  25. return {
  26. 'assigned_labels': gt_labels.new_full(pred_cls[..., 0].shape,
  27. self.num_classes,
  28. dtype=torch.long),
  29. 'assigned_bboxes': gt_bboxes.new_full(pred_box.shape, 0),
  30. 'assign_metrics': gt_bboxes.new_full(pred_cls[..., 0].shape, 0)
  31. }
  32. # get inside points: [N, M]
  33. is_in_gt = self.find_inside_points(gt_bboxes, anchors)
  34. valid_mask = is_in_gt.sum(dim=0) > 0 # [M,]
  35. # ----------------------------------- soft center prior -----------------------------------
  36. gt_center = (gt_bboxes[..., :2] + gt_bboxes[..., 2:]) / 2.0
  37. distance = (anchors.unsqueeze(0) - gt_center.unsqueeze(1)
  38. ).pow(2).sum(-1).sqrt() / stride # [N, M]
  39. distance = distance * valid_mask.unsqueeze(0)
  40. soft_center_prior = torch.pow(10, distance - self.soft_center_radius)
  41. # ----------------------------------- regression cost -----------------------------------
  42. pair_wise_ious, _ = box_iou(gt_bboxes, pred_box) # [N, M]
  43. pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8) * 3.0
  44. # ----------------------------------- classification cost -----------------------------------
  45. ## select the predicted scores corresponded to the gt_labels
  46. pairwise_pred_scores = pred_cls.permute(1, 0) # [M, C] -> [C, M]
  47. pairwise_pred_scores = pairwise_pred_scores[gt_labels.long(), :].float() # [N, M]
  48. ## scale factor
  49. scale_factor = (pair_wise_ious - pairwise_pred_scores.sigmoid()).abs().pow(2.0)
  50. ## cls cost
  51. pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
  52. pairwise_pred_scores, pair_wise_ious,
  53. reduction="none") * scale_factor # [N, M]
  54. del pairwise_pred_scores
  55. ## foreground cost matrix
  56. cost_matrix = pair_wise_cls_loss + pair_wise_ious_loss + soft_center_prior
  57. max_pad_value = torch.ones_like(cost_matrix) * 1e9
  58. cost_matrix = torch.where(valid_mask[None].repeat(num_gt, 1), # [N, M]
  59. cost_matrix, max_pad_value)
  60. # ----------------------------------- dynamic label assignment -----------------------------------
  61. matched_pred_ious, matched_gt_inds, fg_mask_inboxes = self.dynamic_k_matching(
  62. cost_matrix, pair_wise_ious, num_gt)
  63. del pair_wise_cls_loss, cost_matrix, pair_wise_ious, pair_wise_ious_loss
  64. # -----------------------------------process assigned labels -----------------------------------
  65. assigned_labels = gt_labels.new_full(pred_cls[..., 0].shape,
  66. self.num_classes) # [M,]
  67. assigned_labels[fg_mask_inboxes] = gt_labels[matched_gt_inds].squeeze(-1)
  68. assigned_labels = assigned_labels.long() # [M,]
  69. assigned_bboxes = gt_bboxes.new_full(pred_box.shape, 0) # [M, 4]
  70. assigned_bboxes[fg_mask_inboxes] = gt_bboxes[matched_gt_inds] # [M, 4]
  71. assign_metrics = gt_bboxes.new_full(pred_cls[..., 0].shape, 0) # [M,]
  72. assign_metrics[fg_mask_inboxes] = matched_pred_ious # [M,]
  73. assigned_dict = dict(
  74. assigned_labels=assigned_labels,
  75. assigned_bboxes=assigned_bboxes,
  76. assign_metrics=assign_metrics
  77. )
  78. return assigned_dict
  79. def find_inside_points(self, gt_bboxes, anchors):
  80. """
  81. gt_bboxes: Tensor -> [N, 2]
  82. anchors: Tensor -> [M, 2]
  83. """
  84. num_anchors = anchors.shape[0]
  85. num_gt = gt_bboxes.shape[0]
  86. anchors_expand = anchors.unsqueeze(0).repeat(num_gt, 1, 1) # [N, M, 2]
  87. gt_bboxes_expand = gt_bboxes.unsqueeze(1).repeat(1, num_anchors, 1) # [N, M, 4]
  88. # offset
  89. lt = anchors_expand - gt_bboxes_expand[..., :2]
  90. rb = gt_bboxes_expand[..., 2:] - anchors_expand
  91. bbox_deltas = torch.cat([lt, rb], dim=-1)
  92. is_in_gts = bbox_deltas.min(dim=-1).values > 0
  93. return is_in_gts
  94. def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt):
  95. """Use IoU and matching cost to calculate the dynamic top-k positive
  96. targets.
  97. Args:
  98. cost_matrix (Tensor): Cost matrix.
  99. pairwise_ious (Tensor): Pairwise iou matrix.
  100. num_gt (int): Number of gt.
  101. valid_mask (Tensor): Mask for valid bboxes.
  102. Returns:
  103. tuple: matched ious and gt indexes.
  104. """
  105. matching_matrix = torch.zeros_like(cost_matrix, dtype=torch.uint8)
  106. # select candidate topk ious for dynamic-k calculation
  107. # candidate_topk = min(self.topk_candidates, pairwise_ious.size(1))
  108. candidate_topk = self.topk_candidates
  109. topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=1)
  110. # calculate dynamic k for each gt
  111. dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
  112. # sorting the batch cost matirx is faster than topk
  113. _, sorted_indices = torch.sort(cost_matrix, dim=1)
  114. for gt_idx in range(num_gt):
  115. topk_ids = sorted_indices[gt_idx, :dynamic_ks[gt_idx]]
  116. matching_matrix[gt_idx, :][topk_ids] = 1
  117. del topk_ious, dynamic_ks, topk_ids
  118. prior_match_gt_mask = matching_matrix.sum(0) > 1
  119. if prior_match_gt_mask.sum() > 0:
  120. cost_min, cost_argmin = torch.min(
  121. cost_matrix[:, prior_match_gt_mask], dim=0)
  122. matching_matrix[:, prior_match_gt_mask] *= 0
  123. matching_matrix[cost_argmin, prior_match_gt_mask] = 1
  124. # get foreground mask inside box and center prior
  125. fg_mask_inboxes = matching_matrix.sum(0) > 0
  126. matched_pred_ious = (matching_matrix *
  127. pairwise_ious).sum(0)[fg_mask_inboxes]
  128. matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
  129. return matched_pred_ious, matched_gt_inds, fg_mask_inboxes