yolov5_af_config.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. # yolo Config
  2. def build_yolov5af_config(args):
  3. if args.model == 'yolov5_af_n':
  4. return Yolov5AFNConfig()
  5. elif args.model == 'yolov5_af_s':
  6. return Yolov5AFSConfig()
  7. elif args.model == 'yolov5_af_m':
  8. return Yolov5AFMConfig()
  9. elif args.model == 'yolov5_af_l':
  10. return Yolov5AFLConfig()
  11. elif args.model == 'yolov5_af_':
  12. return Yolov5AFXConfig()
  13. else:
  14. raise NotImplementedError("No config for model: {}".format(args.model))
  15. # YOLOv5AF-Base config
  16. class Yolov5AFBaseConfig(object):
  17. def __init__(self) -> None:
  18. # ---------------- Model config ----------------
  19. self.width = 1.0
  20. self.depth = 1.0
  21. self.out_stride = [8, 16, 32]
  22. self.max_stride = 32
  23. self.num_levels = 3
  24. self.scale = "b"
  25. ## Backbone
  26. self.bk_act = 'silu'
  27. self.bk_norm = 'BN'
  28. self.bk_depthwise = False
  29. ## Neck
  30. self.neck_act = 'silu'
  31. self.neck_norm = 'BN'
  32. self.neck_depthwise = False
  33. self.neck_expand_ratio = 0.5
  34. self.spp_pooling_size = 5
  35. ## FPN
  36. self.fpn_act = 'silu'
  37. self.fpn_norm = 'BN'
  38. self.fpn_depthwise = False
  39. ## Head
  40. self.head_act = 'silu'
  41. self.head_norm = 'BN'
  42. self.head_depthwise = False
  43. self.head_dim = 256
  44. self.num_cls_head = 2
  45. self.num_reg_head = 2
  46. # ---------------- Post-process config ----------------
  47. ## Post process
  48. self.val_topk = 1000
  49. self.val_conf_thresh = 0.001
  50. self.val_nms_thresh = 0.7
  51. self.test_topk = 100
  52. self.test_conf_thresh = 0.3
  53. self.test_nms_thresh = 0.5
  54. # ---------------- Assignment config ----------------
  55. ## Matcher
  56. self.ota_center_sampling_radius = 2.5
  57. self.ota_topk_candidate = 10
  58. ## Loss weight
  59. self.loss_obj = 1.0
  60. self.loss_cls = 1.0
  61. self.loss_box = 5.0
  62. # ---------------- ModelEMA config ----------------
  63. self.use_ema = True
  64. self.ema_decay = 0.9998
  65. self.ema_tau = 2000
  66. # ---------------- Optimizer config ----------------
  67. self.trainer = 'yolo'
  68. self.optimizer = 'adamw'
  69. self.per_image_lr = 0.001 / 64
  70. self.base_lr = None # base_lr = per_image_lr * batch_size
  71. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  72. self.momentum = 0.9
  73. self.weight_decay = 0.05
  74. self.clip_max_norm = 35.0
  75. self.warmup_bias_lr = 0.1
  76. self.warmup_momentum = 0.8
  77. # ---------------- Lr Scheduler config ----------------
  78. self.warmup_epoch = 3
  79. self.lr_scheduler = "cosine"
  80. self.max_epoch = 300
  81. self.eval_epoch = 10
  82. self.no_aug_epoch = 20
  83. # ---------------- Data process config ----------------
  84. self.aug_type = 'yolo'
  85. self.box_format = 'xyxy'
  86. self.normalize_coords = False
  87. self.mosaic_prob = 1.0
  88. self.mixup_prob = 0.0
  89. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  90. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  91. ## Pixel mean & std
  92. self.pixel_mean = [0., 0., 0.]
  93. self.pixel_std = [255., 255., 255.]
  94. ## Transforms
  95. self.train_img_size = 640
  96. self.test_img_size = 640
  97. self.use_ablu = True
  98. self.affine_params = {
  99. 'degrees': 0.0,
  100. 'translate': 0.2,
  101. 'scale': [0.1, 2.0],
  102. 'shear': 0.0,
  103. 'perspective': 0.0,
  104. 'hsv_h': 0.015,
  105. 'hsv_s': 0.7,
  106. 'hsv_v': 0.4,
  107. }
  108. def print_config(self):
  109. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  110. for k, v in config_dict.items():
  111. print("{} : {}".format(k, v))
  112. # YOLOv5AF-N
  113. class Yolov5AFNConfig(Yolov5AFBaseConfig):
  114. def __init__(self) -> None:
  115. super().__init__()
  116. # ---------------- Model config ----------------
  117. self.width = 0.25
  118. self.depth = 0.34
  119. self.scale = "n"
  120. # ---------------- Data process config ----------------
  121. self.mosaic_prob = 1.0
  122. self.mixup_prob = 0.0
  123. self.copy_paste = 0.5
  124. # YOLOv5AF-S
  125. class Yolov5AFSConfig(Yolov5AFBaseConfig):
  126. def __init__(self) -> None:
  127. super().__init__()
  128. # ---------------- Model config ----------------
  129. self.width = 0.50
  130. self.depth = 0.34
  131. self.scale = "s"
  132. # ---------------- Data process config ----------------
  133. self.mosaic_prob = 1.0
  134. self.mixup_prob = 0.0
  135. self.copy_paste = 0.5
  136. # YOLOv5AF-M
  137. class Yolov5AFMConfig(Yolov5AFBaseConfig):
  138. def __init__(self) -> None:
  139. super().__init__()
  140. # ---------------- Model config ----------------
  141. self.width = 0.75
  142. self.depth = 0.67
  143. self.scale = "m"
  144. # ---------------- Data process config ----------------
  145. self.mosaic_prob = 1.0
  146. self.mixup_prob = 0.1
  147. self.copy_paste = 0.5
  148. # YOLOv5AF-L
  149. class Yolov5AFLConfig(Yolov5AFBaseConfig):
  150. def __init__(self) -> None:
  151. super().__init__()
  152. # ---------------- Model config ----------------
  153. self.width = 1.0
  154. self.depth = 1.0
  155. self.scale = "l"
  156. # ---------------- Data process config ----------------
  157. self.mosaic_prob = 1.0
  158. self.mixup_prob = 0.1
  159. self.copy_paste = 0.5
  160. # YOLOv5AF-X
  161. class Yolov5AFXConfig(Yolov5AFBaseConfig):
  162. def __init__(self) -> None:
  163. super().__init__()
  164. # ---------------- Model config ----------------
  165. self.width = 1.25
  166. self.depth = 1.34
  167. self.scale = "x"
  168. # ---------------- Data process config ----------------
  169. self.mosaic_prob = 1.0
  170. self.mixup_prob = 0.1
  171. self.copy_paste = 0.5