loss.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from utils.box_ops import get_ious, bbox2dist
  5. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  6. from .matcher import AlignedSimOTA
  7. class SetCriterion(object):
  8. def __init__(self, cfg):
  9. self.cfg = cfg
  10. self.num_classes = cfg.num_classes
  11. # --------------- Loss config ---------------
  12. self.loss_cls_weight = cfg.loss_cls
  13. self.loss_box_weight = cfg.loss_box
  14. # --------------- Matcher config ---------------
  15. self.matcher = AlignedSimOTA(soft_center_radius = cfg.ota_soft_center_radius,
  16. topk_candidates = cfg.ota_topk_candidates,
  17. num_classes = cfg.num_classes,
  18. )
  19. def loss_classes(self, pred_cls, target, beta=2.0):
  20. # Quality FocalLoss
  21. """
  22. pred_cls: (torch.Tensor): [N, C]。
  23. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
  24. """
  25. label, score = target
  26. pred_sigmoid = pred_cls.sigmoid()
  27. scale_factor = pred_sigmoid
  28. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  29. ce_loss = F.binary_cross_entropy_with_logits(
  30. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  31. bg_class_ind = pred_cls.shape[-1]
  32. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  33. if pos.shape[0] > 0:
  34. pos_label = label[pos].long()
  35. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  36. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  37. pred_cls[pos, pos_label], score[pos],
  38. reduction='none') * scale_factor.abs().pow(beta)
  39. return ce_loss
  40. def loss_bboxes(self, pred_box, gt_box):
  41. ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
  42. loss_box = 1.0 - ious
  43. return loss_box
  44. def __call__(self, outputs, targets):
  45. """
  46. outputs['pred_cls']: List(Tensor) [B, M, C]
  47. outputs['pred_box']: List(Tensor) [B, M, 4]
  48. outputs['pred_box']: List(Tensor) [B, M, 4]
  49. outputs['strides']: List(Int) [8, 16, 32] output stride
  50. targets: (List) [dict{'boxes': [...],
  51. 'labels': [...],
  52. 'orig_size': ...}, ...]
  53. """
  54. bs = outputs['pred_cls'][0].shape[0]
  55. device = outputs['pred_cls'][0].device
  56. fpn_strides = outputs['strides']
  57. anchors = outputs['anchors']
  58. # preds: [B, M, C]
  59. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  60. box_preds = torch.cat(outputs['pred_box'], dim=1)
  61. # --------------- label assignment ---------------
  62. cls_targets = []
  63. box_targets = []
  64. assign_metrics = []
  65. for batch_idx in range(bs):
  66. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  67. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  68. assigned_result = self.matcher(fpn_strides=fpn_strides,
  69. anchors=anchors,
  70. pred_cls=cls_preds[batch_idx].detach(),
  71. pred_box=box_preds[batch_idx].detach(),
  72. gt_labels=tgt_labels,
  73. gt_bboxes=tgt_bboxes
  74. )
  75. cls_targets.append(assigned_result['assigned_labels'])
  76. box_targets.append(assigned_result['assigned_bboxes'])
  77. assign_metrics.append(assigned_result['assign_metrics'])
  78. # List[B, M, C] -> Tensor[BM, C]
  79. cls_targets = torch.cat(cls_targets, dim=0)
  80. box_targets = torch.cat(box_targets, dim=0)
  81. assign_metrics = torch.cat(assign_metrics, dim=0)
  82. # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
  83. bg_class_ind = self.num_classes
  84. pos_inds = ((cls_targets >= 0) & (cls_targets < bg_class_ind)).nonzero().squeeze(1)
  85. num_fgs = assign_metrics.sum()
  86. if is_dist_avail_and_initialized():
  87. torch.distributed.all_reduce(num_fgs)
  88. num_fgs = (num_fgs / get_world_size()).clamp(1.0).item()
  89. # ------------------ Classification loss ------------------
  90. cls_preds = cls_preds.view(-1, self.num_classes)
  91. loss_cls = self.loss_classes(cls_preds, (cls_targets, assign_metrics))
  92. loss_cls = loss_cls.sum() / num_fgs
  93. # ------------------ Regression loss ------------------
  94. box_preds_pos = box_preds.view(-1, 4)[pos_inds]
  95. box_targets_pos = box_targets[pos_inds]
  96. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos)
  97. loss_box = loss_box.sum() / num_fgs
  98. # total loss
  99. losses = self.loss_cls_weight * loss_cls + \
  100. self.loss_box_weight * loss_box
  101. loss_dict = dict(
  102. loss_cls = loss_cls,
  103. loss_box = loss_box,
  104. losses = losses
  105. )
  106. return loss_dict