dilated_encoder.py 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. import torch.nn as nn
  2. from utils import weight_init
  3. from ..basic.conv import ConvModule
  4. # BottleNeck
  5. class Bottleneck(nn.Module):
  6. def __init__(self, in_dim, dilation, expand_ratio, act_type='relu', norm_type='BN'):
  7. super(Bottleneck, self).__init__()
  8. # ------------------ Basic parameters -------------------
  9. self.in_dim = in_dim
  10. self.dilation = dilation
  11. self.expand_ratio = expand_ratio
  12. inter_dim = round(in_dim * expand_ratio)
  13. # ------------------ Network parameters -------------------
  14. self.branch = nn.Sequential(
  15. ConvModule(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type),
  16. ConvModule(inter_dim, inter_dim, k=3, p=dilation, d=dilation, act_type=act_type, norm_type=norm_type),
  17. ConvModule(inter_dim, in_dim, k=1, act_type=act_type, norm_type=norm_type)
  18. )
  19. def forward(self, x):
  20. return x + self.branch(x)
  21. # Dilated Encoder
  22. class DilatedEncoder(nn.Module):
  23. def __init__(self, in_dim, out_dim, expand_ratio, dilations=[2, 4, 6, 8], act_type='relu', norm_type='BN'):
  24. super(DilatedEncoder, self).__init__()
  25. # ------------------ Basic parameters -------------------
  26. self.in_dim = in_dim
  27. self.out_dim = out_dim
  28. self.expand_ratio = expand_ratio
  29. self.dilations = dilations
  30. # ------------------ Network parameters -------------------
  31. ## proj layer
  32. self.projector = nn.Sequential(
  33. ConvModule(in_dim, out_dim, k=1, act_type=None, norm_type=norm_type),
  34. ConvModule(out_dim, out_dim, k=3, p=1, act_type=None, norm_type=norm_type)
  35. )
  36. ## encoder layers
  37. self.encoders = nn.Sequential(
  38. *[Bottleneck(out_dim, d, expand_ratio, act_type, norm_type) for d in dilations])
  39. self._init_weight()
  40. def _init_weight(self):
  41. for m in self.projector:
  42. if isinstance(m, nn.Conv2d):
  43. weight_init.c2_xavier_fill(m)
  44. weight_init.c2_xavier_fill(m)
  45. if isinstance(m, (nn.GroupNorm, nn.BatchNorm2d, nn.SyncBatchNorm)):
  46. nn.init.constant_(m.weight, 1)
  47. nn.init.constant_(m.bias, 0)
  48. for m in self.encoders.modules():
  49. if isinstance(m, nn.Conv2d):
  50. nn.init.normal_(m.weight, mean=0, std=0.01)
  51. if hasattr(m, 'bias') and m.bias is not None:
  52. nn.init.constant_(m.bias, 0)
  53. if isinstance(m, (nn.GroupNorm, nn.BatchNorm2d, nn.SyncBatchNorm)):
  54. nn.init.constant_(m.weight, 1)
  55. nn.init.constant_(m.bias, 0)
  56. def forward(self, x):
  57. x = self.projector(x)
  58. x = self.encoders(x)
  59. return x