criterion.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from utils.box_ops import get_ious
  5. from utils.misc import sigmoid_focal_loss
  6. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  7. from .matcher import FcosMatcher, SimOtaMatcher
  8. class SetCriterion(nn.Module):
  9. def __init__(self, cfg):
  10. super().__init__()
  11. # ------------- Basic parameters -------------
  12. self.cfg = cfg
  13. self.num_classes = cfg.num_classes
  14. # ------------- Focal loss -------------
  15. self.alpha = cfg.focal_loss_alpha
  16. self.gamma = cfg.focal_loss_gamma
  17. # ------------- Loss weight -------------
  18. self.weight_dict = {'loss_cls': cfg.loss_cls_weight,
  19. 'loss_reg': cfg.loss_reg_weight,
  20. 'loss_ctn': cfg.loss_ctn_weight}
  21. # ------------- Matcher -------------
  22. self.matcher_cfg = cfg.matcher_hpy
  23. if cfg.matcher == 'fcos_matcher':
  24. self.matcher = FcosMatcher(cfg.num_classes,
  25. self.matcher_cfg['center_sampling_radius'],
  26. self.matcher_cfg['object_sizes_of_interest'],
  27. [1., 1., 1., 1.]
  28. )
  29. elif cfg.matcher == 'simota':
  30. self.matcher = SimOtaMatcher(cfg.num_classes,
  31. self.matcher_cfg['soft_center_radius'],
  32. self.matcher_cfg['topk_candidates'])
  33. else:
  34. raise NotImplementedError("Unknown matcher: {}.".format(cfg.matcher))
  35. def loss_labels(self, pred_cls, tgt_cls, num_boxes=1.0):
  36. """
  37. pred_cls: (Tensor) [N, C]
  38. tgt_cls: (Tensor) [N, C]
  39. """
  40. # cls loss: [V, C]
  41. loss_cls = sigmoid_focal_loss(pred_cls, tgt_cls, self.alpha, self.gamma)
  42. return loss_cls.sum() / num_boxes
  43. def loss_bboxes_ltrb(self, pred_delta, tgt_delta, bbox_quality=None, num_boxes=1.0):
  44. """
  45. pred_box: (Tensor) [N, 4]
  46. tgt_box: (Tensor) [N, 4]
  47. """
  48. pred_delta = torch.cat((-pred_delta[..., :2], pred_delta[..., 2:]), dim=-1)
  49. tgt_delta = torch.cat((-tgt_delta[..., :2], tgt_delta[..., 2:]), dim=-1)
  50. eps = torch.finfo(torch.float32).eps
  51. pred_area = (pred_delta[..., 2] - pred_delta[..., 0]).clamp_(min=0) \
  52. * (pred_delta[..., 3] - pred_delta[..., 1]).clamp_(min=0)
  53. tgt_area = (tgt_delta[..., 2] - tgt_delta[..., 0]).clamp_(min=0) \
  54. * (tgt_delta[..., 3] - tgt_delta[..., 1]).clamp_(min=0)
  55. w_intersect = (torch.min(pred_delta[..., 2], tgt_delta[..., 2])
  56. - torch.max(pred_delta[..., 0], tgt_delta[..., 0])).clamp_(min=0)
  57. h_intersect = (torch.min(pred_delta[..., 3], tgt_delta[..., 3])
  58. - torch.max(pred_delta[..., 1], tgt_delta[..., 1])).clamp_(min=0)
  59. area_intersect = w_intersect * h_intersect
  60. area_union = tgt_area + pred_area - area_intersect
  61. ious = area_intersect / area_union.clamp(min=eps)
  62. # giou
  63. g_w_intersect = torch.max(pred_delta[..., 2], tgt_delta[..., 2]) \
  64. - torch.min(pred_delta[..., 0], tgt_delta[..., 0])
  65. g_h_intersect = torch.max(pred_delta[..., 3], tgt_delta[..., 3]) \
  66. - torch.min(pred_delta[..., 1], tgt_delta[..., 1])
  67. ac_uion = g_w_intersect * g_h_intersect
  68. gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps)
  69. loss_box = 1 - gious
  70. if bbox_quality is not None:
  71. loss_box = loss_box * bbox_quality.view(loss_box.size())
  72. return loss_box.sum() / num_boxes
  73. def loss_bboxes_xyxy(self, pred_box, gt_box, num_boxes=1.0):
  74. ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
  75. loss_box = 1.0 - ious
  76. return loss_box.sum() / num_boxes
  77. def fcos_loss(self, outputs, targets):
  78. """
  79. outputs['pred_cls']: (Tensor) [B, M, C]
  80. outputs['pred_reg']: (Tensor) [B, M, 4]
  81. outputs['pred_ctn']: (Tensor) [B, M, 1]
  82. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  83. targets: (List) [dict{'boxes': [...],
  84. 'labels': [...],
  85. 'orig_size': ...}, ...]
  86. """
  87. # -------------------- Pre-process --------------------
  88. device = outputs['pred_cls'][0].device
  89. fpn_strides = outputs['strides']
  90. anchors = outputs['anchors']
  91. pred_cls = torch.cat(outputs['pred_cls'], dim=1).view(-1, self.num_classes)
  92. pred_delta = torch.cat(outputs['pred_reg'], dim=1).view(-1, 4)
  93. pred_ctn = torch.cat(outputs['pred_ctn'], dim=1).view(-1, 1)
  94. masks = ~torch.cat(outputs['mask'], dim=1).view(-1)
  95. # -------------------- Label Assignment --------------------
  96. gt_classes, gt_deltas, gt_centerness = self.matcher(fpn_strides, anchors, targets)
  97. gt_classes = gt_classes.flatten().to(device)
  98. gt_deltas = gt_deltas.view(-1, 4).to(device)
  99. gt_centerness = gt_centerness.view(-1, 1).to(device)
  100. foreground_idxs = (gt_classes >= 0) & (gt_classes != self.num_classes)
  101. num_foreground = foreground_idxs.sum()
  102. if is_dist_avail_and_initialized():
  103. torch.distributed.all_reduce(num_foreground)
  104. num_foreground = torch.clamp(num_foreground / get_world_size(), min=1).item()
  105. num_foreground_centerness = gt_centerness[foreground_idxs].sum()
  106. if is_dist_avail_and_initialized():
  107. torch.distributed.all_reduce(num_foreground_centerness)
  108. num_targets = torch.clamp(num_foreground_centerness / get_world_size(), min=1).item()
  109. # -------------------- classification loss --------------------
  110. gt_classes_target = torch.zeros_like(pred_cls)
  111. gt_classes_target[foreground_idxs, gt_classes[foreground_idxs]] = 1
  112. valid_idxs = (gt_classes >= 0) & masks
  113. loss_labels = self.loss_labels(
  114. pred_cls[valid_idxs], gt_classes_target[valid_idxs], num_foreground)
  115. # -------------------- regression loss --------------------
  116. loss_bboxes = self.loss_bboxes_ltrb(
  117. pred_delta[foreground_idxs], gt_deltas[foreground_idxs], gt_centerness[foreground_idxs], num_targets)
  118. # -------------------- centerness loss --------------------
  119. loss_centerness = F.binary_cross_entropy_with_logits(
  120. pred_ctn[foreground_idxs], gt_centerness[foreground_idxs], reduction='none')
  121. loss_centerness = loss_centerness.sum() / num_foreground
  122. loss_dict = dict(
  123. loss_cls = loss_labels,
  124. loss_reg = loss_bboxes,
  125. loss_ctn = loss_centerness,
  126. )
  127. return loss_dict
  128. def ota_loss(self, outputs, targets):
  129. """
  130. outputs['pred_cls']: (Tensor) [B, M, C]
  131. outputs['pred_reg']: (Tensor) [B, M, 4]
  132. outputs['pred_box']: (Tensor) [B, M, 4]
  133. outputs['pred_ctn']: (Tensor) [B, M, 1]
  134. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  135. targets: (List) [dict{'boxes': [...],
  136. 'labels': [...],
  137. 'orig_size': ...}, ...]
  138. """
  139. # -------------------- Pre-process --------------------
  140. device = outputs['pred_cls'][0].device
  141. batch_size = outputs['pred_cls'][0].shape[0]
  142. fpn_strides = outputs['strides']
  143. anchors = outputs['anchors']
  144. pred_cls = torch.cat(outputs['pred_cls'], dim=1) # [B, M, C]
  145. pred_box = torch.cat(outputs['pred_box'], dim=1) # [B, M, 4]
  146. pred_ctn = torch.cat(outputs['pred_ctn'], dim=1) # [B, M, 1]
  147. masks = ~torch.cat(outputs['mask'], dim=1).view(-1)
  148. # -------------------- Label Assignment --------------------
  149. gt_classes = []
  150. gt_bboxes = []
  151. gt_centerness = []
  152. for batch_idx in range(batch_size):
  153. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  154. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  155. # refine target
  156. tgt_boxes_wh = tgt_bboxes[..., 2:] - tgt_bboxes[..., :2]
  157. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  158. keep = (min_tgt_size >= 8)
  159. tgt_bboxes = tgt_bboxes[keep]
  160. tgt_labels = tgt_labels[keep]
  161. # label assignment
  162. assigned_result = self.matcher(fpn_strides=fpn_strides,
  163. anchors=anchors,
  164. pred_cls=pred_cls[batch_idx].detach(),
  165. pred_box=pred_box[batch_idx].detach(),
  166. pred_iou=pred_ctn[batch_idx].detach(),
  167. gt_labels=tgt_labels,
  168. gt_bboxes=tgt_bboxes
  169. )
  170. gt_classes.append(assigned_result['assigned_labels'])
  171. gt_bboxes.append(assigned_result['assigned_bboxes'])
  172. gt_centerness.append(assigned_result['assign_metrics'])
  173. # List[B, M, C] -> Tensor[BM, C]
  174. gt_classes = torch.cat(gt_classes, dim=0) # [BM,]
  175. gt_bboxes = torch.cat(gt_bboxes, dim=0) # [BM, 4]
  176. gt_centerness = torch.cat(gt_centerness, dim=0) # [BM,]
  177. valid_idxs = (gt_classes >= 0) & masks
  178. foreground_idxs = (gt_classes >= 0) & (gt_classes != self.num_classes)
  179. num_foreground = foreground_idxs.sum()
  180. if is_dist_avail_and_initialized():
  181. torch.distributed.all_reduce(num_foreground)
  182. num_foreground = torch.clamp(num_foreground / get_world_size(), min=1).item()
  183. # -------------------- classification loss --------------------
  184. pred_cls = pred_cls.view(-1, self.num_classes)
  185. gt_classes_target = torch.zeros_like(pred_cls)
  186. gt_classes_target[foreground_idxs, gt_classes[foreground_idxs]] = 1
  187. loss_labels = self.loss_labels(pred_cls[valid_idxs], gt_classes_target[valid_idxs], num_foreground)
  188. # -------------------- regression loss --------------------
  189. pred_box = pred_box.view(-1, 4)
  190. pred_box_pos = pred_box[foreground_idxs]
  191. gt_box_pos = gt_bboxes[foreground_idxs]
  192. loss_bboxes = self.loss_bboxes_xyxy(pred_box_pos, gt_box_pos, num_foreground)
  193. # -------------------- centerness loss --------------------
  194. pred_ctn = pred_ctn.view(-1)
  195. pred_ctn_pos = pred_ctn[foreground_idxs]
  196. gt_ctn_pos = gt_centerness[foreground_idxs]
  197. loss_centerness = F.binary_cross_entropy_with_logits(pred_ctn_pos, gt_ctn_pos, reduction='none')
  198. loss_centerness = loss_centerness.sum() / num_foreground
  199. loss_dict = dict(
  200. loss_cls = loss_labels,
  201. loss_reg = loss_bboxes,
  202. loss_ctn = loss_centerness,
  203. )
  204. return loss_dict
  205. def forward(self, outputs, targets):
  206. """
  207. outputs['pred_cls']: (Tensor) [B, M, C]
  208. outputs['pred_reg']: (Tensor) [B, M, 4]
  209. outputs['pred_ctn']: (Tensor) [B, M, 1]
  210. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  211. targets: (List) [dict{'boxes': [...],
  212. 'labels': [...],
  213. 'orig_size': ...}, ...]
  214. """
  215. if self.cfg.matcher == "fcos_matcher":
  216. return self.fcos_loss(outputs, targets)
  217. elif self.cfg.matcher == "simota":
  218. return self.ota_loss(outputs, targets)
  219. else:
  220. raise NotImplementedError
  221. if __name__ == "__main__":
  222. pass