yolov1.py 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolov1_backbone import Yolov1Backbone
  6. from .yolov1_neck import SPPF
  7. from .yolov1_head import Yolov1DetHead
  8. from .yolov1_pred import Yolov1DetPredLayer
  9. # --------------- External components ---------------
  10. from utils.misc import multiclass_nms
  11. # YOLOv1
  12. class Yolov1(nn.Module):
  13. def __init__(self,
  14. cfg,
  15. is_val = False,
  16. ) -> None:
  17. super(Yolov1, self).__init__()
  18. # ---------------------- Basic setting ----------------------
  19. self.cfg = cfg
  20. self.num_classes = cfg.num_classes
  21. ## Post-process parameters
  22. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  23. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  24. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  25. self.no_multi_labels = False if is_val else True
  26. # ---------------------- Network Parameters ----------------------
  27. self.backbone = Yolov1Backbone(cfg)
  28. self.neck = SPPF(cfg, self.backbone.feat_dim, cfg.head_dim)
  29. self.head = Yolov1DetHead(cfg, self.neck.out_dim)
  30. self.pred = Yolov1DetPredLayer(cfg)
  31. def post_process(self, obj_preds, cls_preds, box_preds):
  32. """
  33. We process predictions at each scale hierarchically
  34. Input:
  35. obj_preds: torch.Tensor -> [B, M, 1], B=1
  36. cls_preds: torch.Tensor -> [B, M, C], B=1
  37. box_preds: torch.Tensor -> [B, M, 4], B=1
  38. Output:
  39. bboxes: np.array -> [N, 4]
  40. scores: np.array -> [N,]
  41. labels: np.array -> [N,]
  42. """
  43. obj_preds = obj_preds[0]
  44. cls_preds = cls_preds[0]
  45. box_preds = box_preds[0]
  46. if self.no_multi_labels:
  47. # [M,]
  48. scores, labels = torch.max(
  49. torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid()), dim=1)
  50. # Keep top k top scoring indices only.
  51. num_topk = min(self.topk_candidates, box_preds.size(0))
  52. # topk candidates
  53. predicted_prob, topk_idxs = scores.sort(descending=True)
  54. topk_scores = predicted_prob[:num_topk]
  55. topk_idxs = topk_idxs[:num_topk]
  56. # filter out the proposals with low confidence score
  57. keep_idxs = topk_scores > self.conf_thresh
  58. scores = topk_scores[keep_idxs]
  59. topk_idxs = topk_idxs[keep_idxs]
  60. labels = labels[topk_idxs]
  61. bboxes = box_preds[topk_idxs]
  62. else:
  63. # [M, C] -> [MC,]
  64. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid()).flatten()
  65. # Keep top k top scoring indices only.
  66. num_topk = min(self.topk_candidates, box_preds.size(0))
  67. # torch.sort is actually faster than .topk (at least on GPUs)
  68. predicted_prob, topk_idxs = scores.sort(descending=True)
  69. topk_scores = predicted_prob[:num_topk]
  70. topk_idxs = topk_idxs[:num_topk]
  71. # filter out the proposals with low confidence score
  72. keep_idxs = topk_scores > self.conf_thresh
  73. scores = topk_scores[keep_idxs]
  74. topk_idxs = topk_idxs[keep_idxs]
  75. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  76. labels = topk_idxs % self.num_classes
  77. bboxes = box_preds[anchor_idxs]
  78. # to cpu & numpy
  79. scores = scores.cpu().numpy()
  80. labels = labels.cpu().numpy()
  81. bboxes = bboxes.cpu().numpy()
  82. # nms
  83. scores, labels, bboxes = multiclass_nms(
  84. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  85. return bboxes, scores, labels
  86. def forward(self, x):
  87. # ---------------- Backbone ----------------
  88. x = self.backbone(x)
  89. # ---------------- Neck ----------------
  90. x = self.neck(x)
  91. # ---------------- Heads ----------------
  92. cls_feats, reg_feats = self.head(x)
  93. # ---------------- Preds ----------------
  94. outputs = self.pred(cls_feats, reg_feats)
  95. outputs['image_size'] = [x.shape[2], x.shape[3]]
  96. if not self.training:
  97. obj_preds = outputs['pred_obj']
  98. cls_preds = outputs['pred_cls']
  99. box_preds = outputs['pred_box']
  100. # post process
  101. bboxes, scores, labels = self.post_process(
  102. obj_preds, cls_preds, box_preds)
  103. outputs = {
  104. "scores": scores,
  105. "labels": labels,
  106. "bboxes": bboxes
  107. }
  108. return outputs