| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- import torch
- import torch.nn as nn
- try:
- from .yolov5_basic import BasicConv, CSPBlock
- except:
- from yolov5_basic import BasicConv, CSPBlock
- # IN1K pretrained weight
- pretrained_urls = {
- 'n': None,
- 's': "https://github.com/yjh0410/ICLab/releases/download/in1k_pretrained/cspdarknet_s_in1k_70.1.pth",
- 'm': None,
- 'l': None,
- 'x': None,
- }
- # --------------------- Yolov3's Backbone -----------------------
- ## Modified DarkNet
- class Yolov5Backbone(nn.Module):
- def __init__(self, cfg):
- super(Yolov5Backbone, self).__init__()
- # ------------------ Basic setting ------------------
- self.model_scale = cfg.scale
- self.feat_dims = [round(64 * cfg.width),
- round(128 * cfg.width),
- round(256 * cfg.width),
- round(512 * cfg.width),
- round(1024 * cfg.width)]
-
- # ------------------ Network setting ------------------
- ## P1/2
- self.layer_1 = BasicConv(3, self.feat_dims[0],
- kernel_size=6, padding=2, stride=2,
- act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise)
- # P2/4
- self.layer_2 = nn.Sequential(
- BasicConv(self.feat_dims[0], self.feat_dims[1],
- kernel_size=3, padding=1, stride=2,
- act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise),
- CSPBlock(in_dim = self.feat_dims[1],
- out_dim = self.feat_dims[1],
- num_blocks = round(3*cfg.depth),
- expansion = 0.5,
- shortcut = True,
- act_type = cfg.bk_act,
- norm_type = cfg.bk_norm,
- depthwise = cfg.bk_depthwise)
- )
- # P3/8
- self.layer_3 = nn.Sequential(
- BasicConv(self.feat_dims[1], self.feat_dims[2],
- kernel_size=3, padding=1, stride=2,
- act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise),
- CSPBlock(in_dim = self.feat_dims[2],
- out_dim = self.feat_dims[2],
- num_blocks = round(9*cfg.depth),
- expansion = 0.5,
- shortcut = True,
- act_type = cfg.bk_act,
- norm_type = cfg.bk_norm,
- depthwise = cfg.bk_depthwise)
- )
- # P4/16
- self.layer_4 = nn.Sequential(
- BasicConv(self.feat_dims[2], self.feat_dims[3],
- kernel_size=3, padding=1, stride=2,
- act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise),
- CSPBlock(in_dim = self.feat_dims[3],
- out_dim = self.feat_dims[3],
- num_blocks = round(9*cfg.depth),
- expansion = 0.5,
- shortcut = True,
- act_type = cfg.bk_act,
- norm_type = cfg.bk_norm,
- depthwise = cfg.bk_depthwise)
- )
- # P5/32
- self.layer_5 = nn.Sequential(
- BasicConv(self.feat_dims[3], self.feat_dims[4],
- kernel_size=3, padding=1, stride=2,
- act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise),
- CSPBlock(in_dim = self.feat_dims[4],
- out_dim = self.feat_dims[4],
- num_blocks = round(3*cfg.depth),
- expansion = 0.5,
- shortcut = True,
- act_type = cfg.bk_act,
- norm_type = cfg.bk_norm,
- depthwise = cfg.bk_depthwise)
- )
- # Initialize all layers
- self.init_weights()
- # Load imagenet pretrained weight
- if cfg.use_pretrained:
- self.load_pretrained()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def load_pretrained(self):
- url = pretrained_urls[self.model_scale]
- if url is not None:
- print('Loading backbone pretrained weight from : {}'.format(url))
- # checkpoint state dict
- checkpoint = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- checkpoint_state_dict = checkpoint.pop("model")
- # model state dict
- model_state_dict = self.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print('Unused key: ', k)
- # load the weight
- self.load_state_dict(checkpoint_state_dict)
- else:
- print('No pretrained weight for model scale: {}.'.format(self.model_scale))
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- if __name__ == '__main__':
- import time
- from thop import profile
- class BaseConfig(object):
- def __init__(self) -> None:
- self.bk_act = 'silu'
- self.bk_norm = 'BN'
- self.bk_depthwise = False
- self.width = 0.5
- self.depth = 0.34
- self.scale = "s"
- self.use_pretrained = True
- cfg = BaseConfig()
- model = Yolov5Backbone(cfg)
- x = torch.randn(1, 3, 640, 640)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- x = torch.randn(1, 3, 640, 640)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|