yolov5.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolov5_backbone import Yolov5Backbone
  6. from .yolov5_neck import SPPF
  7. from .yolov5_pafpn import Yolov5PaFPN
  8. from .yolov5_head import Yolov5DetHead
  9. from .yolov5_pred import Yolov5DetPredLayer
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # YOLOv5
  13. class Yolov5(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. is_val = False,
  17. ) -> None:
  18. super(Yolov5, self).__init__()
  19. # ---------------------- Basic setting ----------------------
  20. self.cfg = cfg
  21. self.num_classes = cfg.num_classes
  22. ## Post-process parameters
  23. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  24. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  25. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  26. self.no_multi_labels = False if is_val else True
  27. # ---------------------- Network Parameters ----------------------
  28. ## Backbone
  29. self.backbone = Yolov5Backbone(cfg)
  30. self.pyramid_feat_dims = self.backbone.feat_dims[-3:]
  31. ## Neck: SPP
  32. self.neck = SPPF(cfg, self.pyramid_feat_dims[-1], self.pyramid_feat_dims[-1])
  33. self.pyramid_feat_dims[-1] = self.neck.out_dim
  34. ## Neck: FPN
  35. self.fpn = Yolov5PaFPN(cfg, self.pyramid_feat_dims)
  36. ## Head
  37. self.head = Yolov5DetHead(cfg, self.fpn.out_dims)
  38. ## Pred
  39. self.pred = Yolov5DetPredLayer(cfg)
  40. def post_process(self, obj_preds, cls_preds, box_preds):
  41. """
  42. We process predictions at each scale hierarchically
  43. Input:
  44. obj_preds: List[torch.Tensor] -> [[B, M, 1], ...], B=1
  45. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  46. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  47. Output:
  48. bboxes: np.array -> [N, 4]
  49. scores: np.array -> [N,]
  50. labels: np.array -> [N,]
  51. """
  52. all_scores = []
  53. all_labels = []
  54. all_bboxes = []
  55. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  56. obj_pred_i = obj_pred_i[0]
  57. cls_pred_i = cls_pred_i[0]
  58. box_pred_i = box_pred_i[0]
  59. if self.no_multi_labels:
  60. # [M,]
  61. scores, labels = torch.max(
  62. torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
  63. # Keep top k top scoring indices only.
  64. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  65. # topk candidates
  66. predicted_prob, topk_idxs = scores.sort(descending=True)
  67. topk_scores = predicted_prob[:num_topk]
  68. topk_idxs = topk_idxs[:num_topk]
  69. # filter out the proposals with low confidence score
  70. keep_idxs = topk_scores > self.conf_thresh
  71. scores = topk_scores[keep_idxs]
  72. topk_idxs = topk_idxs[keep_idxs]
  73. labels = labels[topk_idxs]
  74. bboxes = box_pred_i[topk_idxs]
  75. else:
  76. # [M, C] -> [MC,]
  77. scores_i = torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()).flatten()
  78. # Keep top k top scoring indices only.
  79. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  80. # torch.sort is actually faster than .topk (at least on GPUs)
  81. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  82. topk_scores = predicted_prob[:num_topk]
  83. topk_idxs = topk_idxs[:num_topk]
  84. # filter out the proposals with low confidence score
  85. keep_idxs = topk_scores > self.conf_thresh
  86. scores = topk_scores[keep_idxs]
  87. topk_idxs = topk_idxs[keep_idxs]
  88. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  89. labels = topk_idxs % self.num_classes
  90. bboxes = box_pred_i[anchor_idxs]
  91. all_scores.append(scores)
  92. all_labels.append(labels)
  93. all_bboxes.append(bboxes)
  94. scores = torch.cat(all_scores, dim=0)
  95. labels = torch.cat(all_labels, dim=0)
  96. bboxes = torch.cat(all_bboxes, dim=0)
  97. # to cpu & numpy
  98. scores = scores.cpu().numpy()
  99. labels = labels.cpu().numpy()
  100. bboxes = bboxes.cpu().numpy()
  101. # nms
  102. scores, labels, bboxes = multiclass_nms(
  103. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  104. return bboxes, scores, labels
  105. def forward(self, x):
  106. # ---------------- Backbone ----------------
  107. pyramid_feats = self.backbone(x)
  108. # ---------------- Neck: SPP ----------------
  109. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  110. # ---------------- Neck: PaFPN ----------------
  111. pyramid_feats = self.fpn(pyramid_feats)
  112. # ---------------- Heads ----------------
  113. cls_feats, reg_feats = self.head(pyramid_feats)
  114. # ---------------- Preds ----------------
  115. outputs = self.pred(cls_feats, reg_feats)
  116. outputs['image_size'] = [x.shape[2], x.shape[3]]
  117. if not self.training:
  118. all_obj_preds = outputs['pred_obj']
  119. all_cls_preds = outputs['pred_cls']
  120. all_box_preds = outputs['pred_box']
  121. # post process
  122. bboxes, scores, labels = self.post_process(all_obj_preds, all_cls_preds, all_box_preds)
  123. outputs = {
  124. "scores": scores,
  125. "labels": labels,
  126. "bboxes": bboxes
  127. }
  128. return outputs