yolov7_af_pred.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. # -------------------- Detection Pred Layer --------------------
  5. ## Single-level pred layer
  6. class AFDetPredLayer(nn.Module):
  7. def __init__(self,
  8. cls_dim :int,
  9. reg_dim :int,
  10. stride :int,
  11. num_classes :int,
  12. ):
  13. super().__init__()
  14. # --------- Basic Parameters ----------
  15. self.stride = stride
  16. self.cls_dim = cls_dim
  17. self.reg_dim = reg_dim
  18. self.num_classes = num_classes
  19. # --------- Network Parameters ----------
  20. self.obj_pred = nn.Conv2d(self.cls_dim, 1, kernel_size=1)
  21. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes, kernel_size=1)
  22. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  23. self.init_bias()
  24. def init_bias(self):
  25. # Init bias
  26. init_prob = 0.01
  27. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  28. # obj pred
  29. b = self.obj_pred.bias.view(1, -1)
  30. b.data.fill_(bias_value.item())
  31. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  32. # cls pred
  33. b = self.cls_pred.bias.view(1, -1)
  34. b.data.fill_(bias_value.item())
  35. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  36. # reg pred
  37. b = self.reg_pred.bias.view(-1, )
  38. b.data.fill_(1.0)
  39. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  40. w = self.reg_pred.weight
  41. w.data.fill_(0.)
  42. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  43. def generate_anchors(self, fmp_size):
  44. """
  45. fmp_size: (List) [H, W]
  46. """
  47. fmp_h, fmp_w = fmp_size
  48. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  49. # [H, W, 2] -> [HW, 2]
  50. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  51. anchors = anchors + 0.5
  52. anchors = anchors * self.stride
  53. return anchors
  54. def forward(self, cls_feat, reg_feat):
  55. # 预测层
  56. obj_pred = self.obj_pred(reg_feat)
  57. cls_pred = self.cls_pred(cls_feat)
  58. reg_pred = self.reg_pred(reg_feat)
  59. # 生成网格坐标
  60. B, _, H, W = cls_pred.size()
  61. fmp_size = [H, W]
  62. anchors = self.generate_anchors(fmp_size)
  63. anchors = anchors.to(cls_pred.device)
  64. # 对 pred 的size做一些view调整,便于后续的处理
  65. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  66. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  67. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  68. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  69. # 解算边界框坐标
  70. cxcy_pred = reg_pred[..., :2] * self.stride + anchors
  71. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  72. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  73. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  74. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  75. # output dict
  76. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  77. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  78. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  79. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  80. "anchors" : anchors, # (torch.Tensor) [M, 2]
  81. "fmp_size": fmp_size,
  82. "stride" : self.stride, # (Int)
  83. }
  84. return outputs
  85. ## Multi-level pred layer
  86. class Yolov7AFDetPredLayer(nn.Module):
  87. def __init__(self, cfg):
  88. super().__init__()
  89. # --------- Basic Parameters ----------
  90. self.cfg = cfg
  91. # ----------- Network Parameters -----------
  92. ## pred layers
  93. self.multi_level_preds = nn.ModuleList(
  94. [AFDetPredLayer(cls_dim = round(cfg.head_dim * cfg.width),
  95. reg_dim = round(cfg.head_dim * cfg.width),
  96. stride = cfg.out_stride[level],
  97. num_classes = cfg.num_classes,)
  98. for level in range(cfg.num_levels)
  99. ])
  100. def forward(self, cls_feats, reg_feats):
  101. all_anchors = []
  102. all_fmp_sizes = []
  103. all_obj_preds = []
  104. all_cls_preds = []
  105. all_reg_preds = []
  106. all_box_preds = []
  107. for level in range(self.cfg.num_levels):
  108. # -------------- Single-level prediction --------------
  109. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  110. # collect results
  111. all_obj_preds.append(outputs["pred_obj"])
  112. all_cls_preds.append(outputs["pred_cls"])
  113. all_reg_preds.append(outputs["pred_reg"])
  114. all_box_preds.append(outputs["pred_box"])
  115. all_fmp_sizes.append(outputs["fmp_size"])
  116. all_anchors.append(outputs["anchors"])
  117. # output dict
  118. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  119. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  120. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  121. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  122. "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
  123. "anchors": all_anchors, # List(Tensor) [M, 2]
  124. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  125. }
  126. return outputs
  127. if __name__=='__main__':
  128. import time
  129. from thop import profile
  130. # Model config
  131. # YOLOv7AF-Base config
  132. class Yolov7AFBaseConfig(object):
  133. def __init__(self) -> None:
  134. # ---------------- Model config ----------------
  135. self.width = 1.0
  136. self.depth = 1.0
  137. self.out_stride = [8, 16, 32]
  138. self.max_stride = 32
  139. self.num_levels = 3
  140. ## Head
  141. self.head_dim = 256
  142. cfg = Yolov7AFBaseConfig()
  143. cfg.num_classes = 20
  144. # Build a pred layer
  145. pred = Yolov7AFDetPredLayer(cfg)
  146. # Inference
  147. cls_feats = [torch.randn(1, cfg.head_dim, 80, 80),
  148. torch.randn(1, cfg.head_dim, 40, 40),
  149. torch.randn(1, cfg.head_dim, 20, 20),]
  150. reg_feats = [torch.randn(1, cfg.head_dim, 80, 80),
  151. torch.randn(1, cfg.head_dim, 40, 40),
  152. torch.randn(1, cfg.head_dim, 20, 20),]
  153. t0 = time.time()
  154. output = pred(cls_feats, reg_feats)
  155. t1 = time.time()
  156. print('Time: ', t1 - t0)
  157. print('====== Pred output ======= ')
  158. pred_obj = output["pred_obj"]
  159. pred_cls = output["pred_cls"]
  160. pred_reg = output["pred_reg"]
  161. pred_box = output["pred_box"]
  162. anchors = output["anchors"]
  163. for level in range(cfg.num_levels):
  164. print("- Level-{} : objectness -> {}".format(level, pred_obj[level].shape))
  165. print("- Level-{} : classification -> {}".format(level, pred_cls[level].shape))
  166. print("- Level-{} : delta regression -> {}".format(level, pred_reg[level].shape))
  167. print("- Level-{} : bbox regression -> {}".format(level, pred_box[level].shape))
  168. print("- Level-{} : anchor boxes -> {}".format(level, anchors[level].shape))
  169. flops, params = profile(pred, inputs=(cls_feats, reg_feats, ), verbose=False)
  170. print('==============================')
  171. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  172. print('Params : {:.2f} M'.format(params / 1e6))