yolov7_af.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolov7_af_backbone import Yolov7TBackbone, Yolov7LBackbone
  6. from .yolov7_af_neck import SPPF
  7. from .yolov7_af_pafpn import Yolov7PaFPN
  8. from .yolov7_af_head import Yolov7DetHead
  9. from .yolov7_af_pred import Yolov7AFDetPredLayer
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # Yolov7AF
  13. class Yolov7AF(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. is_val = False,
  17. ) -> None:
  18. super(Yolov7AF, self).__init__()
  19. # ---------------------- Basic setting ----------------------
  20. assert cfg.scale in ["t", "l", "x"]
  21. self.cfg = cfg
  22. self.num_classes = cfg.num_classes
  23. ## Post-process parameters
  24. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  25. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  26. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  27. self.no_multi_labels = False if is_val else True
  28. # ---------------------- Network Parameters ----------------------
  29. ## Backbone
  30. self.backbone = Yolov7TBackbone(cfg) if cfg.scale == "t" else Yolov7LBackbone(cfg)
  31. self.pyramid_feat_dims = self.backbone.feat_dims[-3:]
  32. ## Neck: SPP
  33. self.neck = SPPF(cfg, self.pyramid_feat_dims[-1], self.pyramid_feat_dims[-1]//2)
  34. self.pyramid_feat_dims[-1] = self.neck.out_dim
  35. ## Neck: FPN
  36. self.fpn = Yolov7PaFPN(cfg, self.pyramid_feat_dims)
  37. ## Head
  38. self.head = Yolov7DetHead(cfg, self.fpn.out_dims)
  39. ## Pred
  40. self.pred = Yolov7AFDetPredLayer(cfg)
  41. def post_process(self, obj_preds, cls_preds, box_preds):
  42. """
  43. We process predictions at each scale hierarchically
  44. Input:
  45. obj_preds: List[torch.Tensor] -> [[B, M, 1], ...], B=1
  46. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  47. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  48. Output:
  49. bboxes: np.array -> [N, 4]
  50. scores: np.array -> [N,]
  51. labels: np.array -> [N,]
  52. """
  53. all_scores = []
  54. all_labels = []
  55. all_bboxes = []
  56. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  57. obj_pred_i = obj_pred_i[0]
  58. cls_pred_i = cls_pred_i[0]
  59. box_pred_i = box_pred_i[0]
  60. if self.no_multi_labels:
  61. # [M,]
  62. scores, labels = torch.max(
  63. torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
  64. # Keep top k top scoring indices only.
  65. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  66. # topk candidates
  67. predicted_prob, topk_idxs = scores.sort(descending=True)
  68. topk_scores = predicted_prob[:num_topk]
  69. topk_idxs = topk_idxs[:num_topk]
  70. # filter out the proposals with low confidence score
  71. keep_idxs = topk_scores > self.conf_thresh
  72. scores = topk_scores[keep_idxs]
  73. topk_idxs = topk_idxs[keep_idxs]
  74. labels = labels[topk_idxs]
  75. bboxes = box_pred_i[topk_idxs]
  76. else:
  77. # [M, C] -> [MC,]
  78. scores_i = torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()).flatten()
  79. # Keep top k top scoring indices only.
  80. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  81. # torch.sort is actually faster than .topk (at least on GPUs)
  82. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  83. topk_scores = predicted_prob[:num_topk]
  84. topk_idxs = topk_idxs[:num_topk]
  85. # filter out the proposals with low confidence score
  86. keep_idxs = topk_scores > self.conf_thresh
  87. scores = topk_scores[keep_idxs]
  88. topk_idxs = topk_idxs[keep_idxs]
  89. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  90. labels = topk_idxs % self.num_classes
  91. bboxes = box_pred_i[anchor_idxs]
  92. all_scores.append(scores)
  93. all_labels.append(labels)
  94. all_bboxes.append(bboxes)
  95. scores = torch.cat(all_scores, dim=0)
  96. labels = torch.cat(all_labels, dim=0)
  97. bboxes = torch.cat(all_bboxes, dim=0)
  98. # to cpu & numpy
  99. scores = scores.cpu().numpy()
  100. labels = labels.cpu().numpy()
  101. bboxes = bboxes.cpu().numpy()
  102. # nms
  103. scores, labels, bboxes = multiclass_nms(
  104. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  105. return bboxes, scores, labels
  106. def forward(self, x):
  107. # ---------------- Backbone ----------------
  108. pyramid_feats = self.backbone(x)
  109. # ---------------- Neck: SPP ----------------
  110. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  111. # ---------------- Neck: PaFPN ----------------
  112. pyramid_feats = self.fpn(pyramid_feats)
  113. # ---------------- Heads ----------------
  114. cls_feats, reg_feats = self.head(pyramid_feats)
  115. # ---------------- Preds ----------------
  116. outputs = self.pred(cls_feats, reg_feats)
  117. outputs['image_size'] = [x.shape[2], x.shape[3]]
  118. if not self.training:
  119. all_obj_preds = outputs['pred_obj']
  120. all_cls_preds = outputs['pred_cls']
  121. all_box_preds = outputs['pred_box']
  122. # post process
  123. bboxes, scores, labels = self.post_process(all_obj_preds, all_cls_preds, all_box_preds)
  124. outputs = {
  125. "scores": scores,
  126. "labels": labels,
  127. "bboxes": bboxes
  128. }
  129. return outputs