yolov6_neck.py 988 B

123456789101112131415161718192021222324252627282930
  1. import torch
  2. import torch.nn as nn
  3. try:
  4. from .modules import ConvModule
  5. except:
  6. from modules import ConvModule
  7. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
  8. class SPPF(nn.Module):
  9. """
  10. This code referenced to https://github.com/ultralytics/yolov5
  11. """
  12. def __init__(self, cfg, in_dim, out_dim):
  13. super().__init__()
  14. ## ----------- Basic Parameters -----------
  15. inter_dim = in_dim // 2
  16. self.out_dim = out_dim
  17. ## ----------- Network Parameters -----------
  18. self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1, padding=0, stride=1, act_type="silu")
  19. self.cv2 = ConvModule(inter_dim * 4, out_dim, kernel_size=1, padding=0, stride=1, act_type="silu")
  20. self.m = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
  21. def forward(self, x):
  22. x = self.cv1(x)
  23. y1 = self.m(x)
  24. y2 = self.m(y1)
  25. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))