| 123456789101112131415161718192021222324252627282930 |
- import torch
- import torch.nn as nn
- try:
- from .modules import ConvModule
- except:
- from modules import ConvModule
-
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
- class SPPF(nn.Module):
- """
- This code referenced to https://github.com/ultralytics/yolov5
- """
- def __init__(self, cfg, in_dim, out_dim):
- super().__init__()
- ## ----------- Basic Parameters -----------
- inter_dim = in_dim // 2
- self.out_dim = out_dim
- ## ----------- Network Parameters -----------
- self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1, padding=0, stride=1, act_type="silu")
- self.cv2 = ConvModule(inter_dim * 4, out_dim, kernel_size=1, padding=0, stride=1, act_type="silu")
- self.m = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
- def forward(self, x):
- x = self.cv1(x)
- y1 = self.m(x)
- y2 = self.m(y1)
- return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|