| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- import torch
- import torch.nn as nn
- try:
- from .yolov7_af_basic import BasicConv, MDown, ELANLayer
- except:
- from yolov7_af_basic import BasicConv, MDown, ELANLayer
- # IN1K pretrained weight
- pretrained_urls = {
- 't': "https://github.com/yjh0410/ICLab/releases/download/in1k_pretrained/elannet_t_in1k_63.2.pth",
- 'l': None,
- 'x': None,
- }
- # ELANNet-Tiny
- class Yolov7TBackbone(nn.Module):
- def __init__(self, cfg):
- super(Yolov7TBackbone, self).__init__()
- # ---------------- Basic parameters ----------------
- self.model_scale = cfg.scale
- self.bk_act = cfg.bk_act
- self.bk_norm = cfg.bk_norm
- self.bk_depthwise = cfg.bk_depthwise
- self.elan_depth = 1
- self.feat_dims = [round(64 * cfg.width), round(128 * cfg.width),
- round(256 * cfg.width), round(512 * cfg.width), round(1024 * cfg.width)]
- # ---------------- Model parameters ----------------
- self.layer_1 = self.make_stem(3, self.feat_dims[0])
- self.layer_2 = self.make_block(self.feat_dims[0], self.feat_dims[1], expansion=0.5, downsample="conv")
- self.layer_3 = self.make_block(self.feat_dims[1], self.feat_dims[2], expansion=0.5, downsample="maxpool")
- self.layer_4 = self.make_block(self.feat_dims[2], self.feat_dims[3], expansion=0.5, downsample="maxpool")
- self.layer_5 = self.make_block(self.feat_dims[3], self.feat_dims[4], expansion=0.5, downsample="maxpool")
- # Initialize all layers
- # Initialize all layers
- self.init_weights()
-
- # Load imagenet pretrained weight
- if cfg.use_pretrained:
- self.load_pretrained()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def load_pretrained(self):
- url = pretrained_urls[self.model_scale]
- if url is not None:
- print('Loading backbone pretrained weight from : {}'.format(url))
- # checkpoint state dict
- checkpoint = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- checkpoint_state_dict = checkpoint.pop("model")
- # model state dict
- model_state_dict = self.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print('Unused key: ', k)
- # load the weight
- self.load_state_dict(checkpoint_state_dict)
- else:
- print('No pretrained weight for model scale: {}.'.format(self.model_scale))
- def make_stem(self, in_dim, out_dim):
- stem = BasicConv(in_dim, out_dim, kernel_size=6, padding=2, stride=2,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise)
-
- return stem
- def make_block(self, in_dim, out_dim, expansion=0.5, downsample="maxpool"):
- if downsample == "maxpool":
- block = nn.Sequential(
- nn.MaxPool2d((2, 2), stride=2),
- ELANLayer(in_dim, out_dim, expansion=expansion, num_blocks=self.elan_depth,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise),
- )
- elif downsample == "conv":
- block = nn.Sequential(
- BasicConv(in_dim, out_dim, kernel_size=3, padding=1, stride=2,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise),
- ELANLayer(out_dim, out_dim, expansion=expansion, num_blocks=self.elan_depth,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise),
- )
- else:
- raise NotImplementedError("Unknown downsample type: {}".format(downsample))
- return block
-
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- # ELANNet-Large
- class Yolov7LBackbone(nn.Module):
- def __init__(self, cfg):
- super(Yolov7LBackbone, self).__init__()
- # ---------------- Basic parameters ----------------
- self.model_scale = cfg.scale
- self.bk_act = cfg.bk_act
- self.bk_norm = cfg.bk_norm
- self.bk_depthwise = cfg.bk_depthwise
- self.elan_depth = 2
- self.feat_dims = [round(64 * cfg.width), round(128 * cfg.width), round(256 * cfg.width),
- round(512 * cfg.width), round(1024 * cfg.width), round(1024 * cfg.width)]
- # ---------------- Model parameters ----------------
- self.layer_1 = self.make_stem(3, self.feat_dims[0])
- self.layer_2 = self.make_block(self.feat_dims[0], self.feat_dims[1], self.feat_dims[2], expansion=0.5, conv_downsample=True)
- self.layer_3 = self.make_block(self.feat_dims[2], self.feat_dims[2], self.feat_dims[3], expansion=0.5)
- self.layer_4 = self.make_block(self.feat_dims[3], self.feat_dims[3], self.feat_dims[4], expansion=0.5)
- self.layer_5 = self.make_block(self.feat_dims[4], self.feat_dims[4], self.feat_dims[5], expansion=0.25)
- # Initialize all layers
- self.init_weights()
-
- # Load imagenet pretrained weight
- if cfg.use_pretrained:
- self.load_pretrained()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def load_pretrained(self):
- url = pretrained_urls[self.model_scale]
- if url is not None:
- print('Loading backbone pretrained weight from : {}'.format(url))
- # checkpoint state dict
- checkpoint = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- checkpoint_state_dict = checkpoint.pop("model")
- # model state dict
- model_state_dict = self.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print('Unused key: ', k)
- # load the weight
- self.load_state_dict(checkpoint_state_dict)
- else:
- print('No pretrained weight for model scale: {}.'.format(self.model_scale))
- def make_stem(self, in_dim, out_dim):
- stem = nn.Sequential(
- BasicConv(in_dim, out_dim//2, kernel_size=3, padding=1, stride=1,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise),
- BasicConv(out_dim//2, out_dim, kernel_size=3, padding=1, stride=2,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise),
- BasicConv(out_dim, out_dim, kernel_size=3, padding=1, stride=1,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise)
- )
- return stem
- def make_block(self, in_dim, out_dim_1, out_dim_2, expansion=0.5, conv_downsample=False):
- if conv_downsample:
- block = nn.Sequential(
- BasicConv(in_dim, out_dim_1, kernel_size=3, padding=1, stride=2,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise),
- ELANLayer(out_dim_1, out_dim_2,
- expansion=expansion, num_blocks=self.elan_depth,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise),
- )
- else:
- block = nn.Sequential(
- MDown(in_dim, out_dim_1,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise),
- ELANLayer(out_dim_1, out_dim_2,
- expansion=expansion, num_blocks=self.elan_depth,
- act_type=self.bk_act, norm_type=self.bk_norm, depthwise=self.bk_depthwise),
- )
-
- return block
-
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- if __name__ == '__main__':
- import time
- from thop import profile
- class BaseConfig(object):
- def __init__(self) -> None:
- self.bk_act = 'silu'
- self.bk_norm = 'BN'
- self.bk_depthwise = False
- self.use_pretrained = False
- self.width = 0.5
- self.scale = "t"
- cfg = BaseConfig()
- model = Yolov7TBackbone(cfg)
- x = torch.randn(1, 3, 640, 640)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- x = torch.randn(1, 3, 640, 640)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|