| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436 |
- # ---------------------------------------------------------------------------
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- # ---------------------------------------------------------------------------
- import time
- import datetime
- import numpy as np
- from typing import List
- from thop import profile
- from collections import defaultdict, deque
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.distributed as dist
- from torch import Tensor
- from .distributed_utils import is_dist_avail_and_initialized
- # ---------------------------- Train tools ----------------------------
- class SmoothedValue(object):
- """Track a series of values and provide access to smoothed values over a
- window or the global series average.
- """
- def __init__(self, window_size=20, fmt=None):
- if fmt is None:
- fmt = "{median:.4f} ({global_avg:.4f})"
- self.deque = deque(maxlen=window_size)
- self.total = 0.0
- self.count = 0
- self.fmt = fmt
- def update(self, value, n=1):
- self.deque.append(value)
- self.count += n
- self.total += value * n
- def synchronize_between_processes(self):
- """
- Warning: does not synchronize the deque!
- """
- if not is_dist_avail_and_initialized():
- return
- t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
- dist.barrier()
- dist.all_reduce(t)
- t = t.tolist()
- self.count = int(t[0])
- self.total = t[1]
- @property
- def median(self):
- d = torch.tensor(list(self.deque))
- return d.median().item()
- @property
- def avg(self):
- d = torch.tensor(list(self.deque), dtype=torch.float32)
- return d.mean().item()
- @property
- def global_avg(self):
- return self.total / self.count
- @property
- def max(self):
- return max(self.deque)
- @property
- def value(self):
- return self.deque[-1]
- def __str__(self):
- return self.fmt.format(
- median=self.median,
- avg=self.avg,
- global_avg=self.global_avg,
- max=self.max,
- value=self.value)
- class MetricLogger(object):
- def __init__(self, delimiter="\t"):
- self.meters = defaultdict(SmoothedValue)
- self.delimiter = delimiter
- def update(self, **kwargs):
- for k, v in kwargs.items():
- if isinstance(v, torch.Tensor):
- v = v.item()
- assert isinstance(v, (float, int))
- self.meters[k].update(v)
- def __getattr__(self, attr):
- if attr in self.meters:
- return self.meters[attr]
- if attr in self.__dict__:
- return self.__dict__[attr]
- raise AttributeError("'{}' object has no attribute '{}'".format(
- type(self).__name__, attr))
- def __str__(self):
- loss_str = []
- for name, meter in self.meters.items():
- loss_str.append(
- "{}: {}".format(name, str(meter))
- )
- return self.delimiter.join(loss_str)
- def synchronize_between_processes(self):
- for meter in self.meters.values():
- meter.synchronize_between_processes()
- def add_meter(self, name, meter):
- self.meters[name] = meter
- def log_every(self, iterable, print_freq, header=None):
- i = 0
- if not header:
- header = ''
- start_time = time.time()
- end = time.time()
- iter_time = SmoothedValue(fmt='{avg:.4f}')
- data_time = SmoothedValue(fmt='{avg:.4f}')
- space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
- if torch.cuda.is_available():
- log_msg = self.delimiter.join([
- header,
- '[{0' + space_fmt + '}/{1}]',
- 'eta: {eta}',
- '{meters}',
- 'time: {time}',
- 'data: {data}',
- 'max mem: {memory:.0f}'
- ])
- else:
- log_msg = self.delimiter.join([
- header,
- '[{0' + space_fmt + '}/{1}]',
- 'eta: {eta}',
- '{meters}',
- 'time: {time}',
- 'data: {data}'
- ])
- MB = 1024.0 * 1024.0
- for obj in iterable:
- data_time.update(time.time() - end)
- yield obj
- iter_time.update(time.time() - end)
- if i % print_freq == 0 or i == len(iterable) - 1:
- eta_seconds = iter_time.global_avg * (len(iterable) - i)
- eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
- if torch.cuda.is_available():
- print(log_msg.format(
- i, len(iterable), eta=eta_string,
- meters=str(self),
- time=str(iter_time), data=str(data_time),
- memory=torch.cuda.max_memory_allocated() / MB))
- else:
- print(log_msg.format(
- i, len(iterable), eta=eta_string,
- meters=str(self),
- time=str(iter_time), data=str(data_time)))
- i += 1
- end = time.time()
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print('{} Total time: {} ({:.4f} s / it)'.format(
- header, total_time_str, total_time / len(iterable)))
- class SinkhornDistance(torch.nn.Module):
- def __init__(self, eps=1e-3, max_iter=100, reduction='none'):
- super(SinkhornDistance, self).__init__()
- self.eps = eps
- self.max_iter = max_iter
- self.reduction = reduction
- def forward(self, mu, nu, C):
- u = torch.ones_like(mu)
- v = torch.ones_like(nu)
- # Sinkhorn iterations
- for i in range(self.max_iter):
- v = self.eps * \
- (torch.log(
- nu + 1e-8) - torch.logsumexp(self.M(C, u, v).transpose(-2, -1), dim=-1)) + v
- u = self.eps * \
- (torch.log(
- mu + 1e-8) - torch.logsumexp(self.M(C, u, v), dim=-1)) + u
- U, V = u, v
- # Transport plan pi = diag(a)*K*diag(b)
- pi = torch.exp(
- self.M(C, U, V)).detach()
- # Sinkhorn distance
- cost = torch.sum(
- pi * C, dim=(-2, -1))
- return cost, pi
- def M(self, C, u, v):
- '''
- "Modified cost for logarithmic updates"
- "$M_{ij} = (-c_{ij} + u_i + v_j) / epsilon$"
- '''
- return (-C + u.unsqueeze(-1) + v.unsqueeze(-2)) / self.eps
-
- # ---------------------------- Dataloader tools ----------------------------
- def _max_by_axis(the_list):
- # type: (List[List[int]]) -> List[int]
- maxes = the_list[0]
- for sublist in the_list[1:]:
- for index, item in enumerate(sublist):
- maxes[index] = max(maxes[index], item)
- return maxes
- def batch_tensor_from_tensor_list(tensor_list: List[Tensor]):
- # TODO make this more general
- if tensor_list[0].ndim == 3:
- # TODO make it support different-sized images
- max_size = _max_by_axis([list(img.shape) for img in tensor_list])
- # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
- batch_shape = [len(tensor_list)] + max_size
- b, c, h, w = batch_shape
- dtype = tensor_list[0].dtype
- device = tensor_list[0].device
- tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
- mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
- for img, pad_img, m in zip(tensor_list, tensor, mask):
- pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
- m[: img.shape[1], :img.shape[2]] = False
- else:
- raise ValueError('not supported')
-
- return tensor, mask
- def collate_fn(batch):
- batch = list(zip(*batch))
- batch[0] = batch_tensor_from_tensor_list(batch[0])
- return tuple(batch)
- # ---------------------------- For Model ----------------------------
- ## fuse Conv & BN layer
- def fuse_conv_bn(module):
- """Recursively fuse conv and bn in a module.
- During inference, the functionary of batch norm layers is turned off
- but only the mean and var alone channels are used, which exposes the
- chance to fuse it with the preceding conv layers to save computations and
- simplify network structures.
- Args:
- module (nn.Module): Module to be fused.
- Returns:
- nn.Module: Fused module.
- """
- last_conv = None
- last_conv_name = None
-
- def _fuse_conv_bn(conv, bn):
- """Fuse conv and bn into one module.
- Args:
- conv (nn.Module): Conv to be fused.
- bn (nn.Module): BN to be fused.
- Returns:
- nn.Module: Fused module.
- """
- conv_w = conv.weight
- conv_b = conv.bias if conv.bias is not None else torch.zeros_like(
- bn.running_mean)
- factor = bn.weight / torch.sqrt(bn.running_var + bn.eps)
- conv.weight = nn.Parameter(conv_w *
- factor.reshape([conv.out_channels, 1, 1, 1]))
- conv.bias = nn.Parameter((conv_b - bn.running_mean) * factor + bn.bias)
- return conv
- for name, child in module.named_children():
- if isinstance(child,
- (nn.modules.batchnorm._BatchNorm, nn.SyncBatchNorm)):
- if last_conv is None: # only fuse BN that is after Conv
- continue
- fused_conv = _fuse_conv_bn(last_conv, child)
- module._modules[last_conv_name] = fused_conv
- # To reduce changes, set BN as Identity instead of deleting it.
- module._modules[name] = nn.Identity()
- last_conv = None
- elif isinstance(child, nn.Conv2d):
- last_conv = child
- last_conv_name = name
- else:
- fuse_conv_bn(child)
- return module
- ## compute FLOPs & Parameters
- def compute_flops(model, min_size, max_size, device):
- if isinstance(min_size[0], List):
- min_size, max_size = min_size[0]
- else:
- min_size = min_size[0]
- x = torch.randn(1, 3, min_size, max_size).to(device)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('GFLOPs : {:.2f}'.format(flops / 1e9))
- print('Params : {:.2f} M'.format(params / 1e6))
- ## load trained weight
- def load_weight(model, path_to_ckpt, fuse_cbn=False):
- # check ckpt file
- if path_to_ckpt is None:
- print('no weight file ...')
- else:
- checkpoint = torch.load(path_to_ckpt, map_location='cpu')
- if "epoch" in checkpoint and "mAP" in checkpoint:
- print('--------------------------------------')
- print('Best model infor:')
- print('Epoch: {}'.format(checkpoint.pop("epoch")))
- print('mAP: {}'.format(checkpoint.pop("mAP")))
- print('--------------------------------------')
- checkpoint_state_dict = checkpoint.pop("model")
- model.load_state_dict(checkpoint_state_dict)
- print('Finished loading model!')
- # fuse conv & bn
- if fuse_cbn:
- print('Fusing Conv & BN ...')
- model = fuse_conv_bn(model)
- return model
- ## gradient clip
- def get_total_grad_norm(parameters, norm_type=2):
- parameters = list(filter(lambda p: p.grad is not None, parameters))
- norm_type = float(norm_type)
- device = parameters[0].grad.device
- total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]),
- norm_type)
- return total_norm
- # ---------------------------- For Loss ----------------------------
- ## focal loss
- def sigmoid_focal_loss(inputs, targets, alpha: float = 0.25, gamma: float = 2):
- """
- Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
- Args:
- inputs: A float tensor of arbitrary shape.
- The predictions for each example.
- targets: A float tensor with the same shape as inputs. Stores the binary
- classification label for each element in inputs
- (0 for the negative class and 1 for the positive class).
- alpha: (optional) Weighting factor in range (0,1) to balance
- positive vs negative examples. Default = -1 (no weighting).
- gamma: Exponent of the modulating factor (1 - p_t) to
- balance easy vs hard examples.
- Returns:
- Loss tensor
- """
- prob = inputs.sigmoid()
- ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
- p_t = prob * targets + (1 - prob) * (1 - targets)
- loss = ce_loss * ((1 - p_t) ** gamma)
- if alpha >= 0:
- alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
- loss = alpha_t * loss
- return loss
- # ---------------------------- NMS ----------------------------
- def nms(bboxes, scores, nms_thresh):
- """"Pure Python NMS."""
- x1 = bboxes[:, 0] #xmin
- y1 = bboxes[:, 1] #ymin
- x2 = bboxes[:, 2] #xmax
- y2 = bboxes[:, 3] #ymax
- areas = (x2 - x1) * (y2 - y1)
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- # compute iou
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
- w = np.maximum(1e-10, xx2 - xx1)
- h = np.maximum(1e-10, yy2 - yy1)
- inter = w * h
- iou = inter / (areas[i] + areas[order[1:]] - inter + 1e-14)
- #reserve all the boundingbox whose ovr less than thresh
- inds = np.where(iou <= nms_thresh)[0]
- order = order[inds + 1]
- return keep
- def multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh):
- # nms
- keep = nms(bboxes, scores, nms_thresh)
- scores = scores[keep]
- labels = labels[keep]
- bboxes = bboxes[keep]
- return scores, labels, bboxes
- def multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes):
- # nms
- keep = np.zeros(len(bboxes), dtype=np.int32)
- for i in range(num_classes):
- inds = np.where(labels == i)[0]
- if len(inds) == 0:
- continue
- c_bboxes = bboxes[inds]
- c_scores = scores[inds]
- c_keep = nms(c_bboxes, c_scores, nms_thresh)
- keep[inds[c_keep]] = 1
- keep = np.where(keep > 0)
- scores = scores[keep]
- labels = labels[keep]
- bboxes = bboxes[keep]
- return scores, labels, bboxes
- def multiclass_nms(scores, labels, bboxes, nms_thresh, num_classes, class_agnostic=False):
- if class_agnostic:
- return multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh)
- else:
- return multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes)
|