yolov10.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolov10_backbone import Yolov10Backbone
  6. from .yolov10_pafpn import Yolov10PaFPN
  7. from .yolov10_head import Yolov10DetHead
  8. from .yolov10_pred import Yolov10DetPredLayer
  9. # --------------- External components ---------------
  10. from utils.misc import multiclass_nms
  11. # YOLOv10
  12. class Yolov10(nn.Module):
  13. def __init__(self,
  14. cfg,
  15. is_val = False,
  16. ) -> None:
  17. super(Yolov10, self).__init__()
  18. # ---------------------- Basic setting ----------------------
  19. self.cfg = cfg
  20. self.num_classes = cfg.num_classes
  21. ## Post-process parameters
  22. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  23. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  24. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  25. self.no_multi_labels = False if is_val else True
  26. # ---------------------- Network Parameters ----------------------
  27. ## Backbone
  28. self.backbone = Yolov10Backbone(cfg)
  29. self.pyramid_feat_dims = self.backbone.feat_dims[-3:]
  30. ## PaFPN
  31. self.fpn = Yolov10PaFPN(cfg, self.backbone.feat_dims)
  32. ## Head
  33. self.head = Yolov10DetHead(cfg, self.fpn.out_dims)
  34. self.pred = Yolov10DetPredLayer(cfg, self.head.cls_head_dim, self.head.reg_head_dim)
  35. def post_process(self, cls_preds, box_preds):
  36. """
  37. We process predictions at each scale hierarchically
  38. Input:
  39. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  40. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  41. Output:
  42. bboxes: np.array -> [N, 4]
  43. scores: np.array -> [N,]
  44. labels: np.array -> [N,]
  45. """
  46. all_scores = []
  47. all_labels = []
  48. all_bboxes = []
  49. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  50. cls_pred_i = cls_pred_i[0]
  51. box_pred_i = box_pred_i[0]
  52. if self.no_multi_labels:
  53. # [M,]
  54. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  55. # Keep top k top scoring indices only.
  56. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  57. # topk candidates
  58. predicted_prob, topk_idxs = scores.sort(descending=True)
  59. topk_scores = predicted_prob[:num_topk]
  60. topk_idxs = topk_idxs[:num_topk]
  61. # filter out the proposals with low confidence score
  62. keep_idxs = topk_scores > self.conf_thresh
  63. scores = topk_scores[keep_idxs]
  64. topk_idxs = topk_idxs[keep_idxs]
  65. labels = labels[topk_idxs]
  66. bboxes = box_pred_i[topk_idxs]
  67. else:
  68. # [M, C] -> [MC,]
  69. scores_i = cls_pred_i.sigmoid().flatten()
  70. # Keep top k top scoring indices only.
  71. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  72. # torch.sort is actually faster than .topk (at least on GPUs)
  73. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  74. topk_scores = predicted_prob[:num_topk]
  75. topk_idxs = topk_idxs[:num_topk]
  76. # filter out the proposals with low confidence score
  77. keep_idxs = topk_scores > self.conf_thresh
  78. scores = topk_scores[keep_idxs]
  79. topk_idxs = topk_idxs[keep_idxs]
  80. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  81. labels = topk_idxs % self.num_classes
  82. bboxes = box_pred_i[anchor_idxs]
  83. all_scores.append(scores)
  84. all_labels.append(labels)
  85. all_bboxes.append(bboxes)
  86. scores = torch.cat(all_scores, dim=0)
  87. labels = torch.cat(all_labels, dim=0)
  88. bboxes = torch.cat(all_bboxes, dim=0)
  89. # to cpu & numpy
  90. scores = scores.cpu().numpy()
  91. labels = labels.cpu().numpy()
  92. bboxes = bboxes.cpu().numpy()
  93. # nms
  94. scores, labels, bboxes = multiclass_nms(
  95. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  96. return bboxes, scores, labels
  97. def forward(self, x):
  98. # ---------------- Backbone ----------------
  99. pyramid_feats = self.backbone(x)
  100. # ---------------- PaFPN ----------------
  101. pyramid_feats = self.fpn(pyramid_feats)
  102. # ---------------- Heads ----------------
  103. cls_feats, reg_feats = self.head(pyramid_feats)
  104. # ---------------- Preds ----------------
  105. outputs = self.pred(cls_feats, reg_feats)
  106. outputs['image_size'] = [x.shape[2], x.shape[3]]
  107. if not self.training:
  108. all_cls_preds = outputs['pred_cls']
  109. all_box_preds = outputs['pred_box']
  110. # post process
  111. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  112. outputs = {
  113. "scores": scores,
  114. "labels": labels,
  115. "bboxes": bboxes
  116. }
  117. return outputs