| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- import torch
- # ------------------------- WarmUp LR Scheduler -------------------------
- ## Warmup LR Scheduler
- class LinearWarmUpScheduler(object):
- def __init__(self, base_lr=0.01, wp_iter=500, warmup_factor=0.00066667):
- self.base_lr = base_lr
- self.wp_iter = wp_iter
- self.warmup_factor = warmup_factor
- def set_lr(self, optimizer, lr):
- for param_group in optimizer.param_groups:
- init_lr = param_group['initial_lr']
- ratio = init_lr / self.base_lr
- param_group['lr'] = lr * ratio
- def __call__(self, iter, optimizer):
- # warmup
- alpha = iter / self.wp_iter
- warmup_factor = self.warmup_factor * (1 - alpha) + alpha
- tmp_lr = self.base_lr * warmup_factor
- self.set_lr(optimizer, tmp_lr)
-
- ## Build WP LR Scheduler
- def build_wp_lr_scheduler(cfg):
- print('==============================')
- print('WarmUpScheduler: {}'.format(cfg.warmup))
- print('--base_lr: {}'.format(cfg.base_lr))
- print('--warmup_iters: {} ({})'.format(cfg.warmup_iters, cfg.warmup_iters * cfg.grad_accumulate))
- print('--warmup_factor: {}'.format(cfg.warmup_factor))
- if cfg.warmup == 'linear':
- wp_lr_scheduler = LinearWarmUpScheduler(cfg.base_lr, cfg.warmup_iters, cfg.warmup_factor)
-
- return wp_lr_scheduler
-
- # ------------------------- LR Scheduler -------------------------
- def build_lr_scheduler(cfg, optimizer, resume=None):
- print('==============================')
- print('LR Scheduler: {}'.format(cfg.lr_scheduler))
- if cfg.lr_scheduler == 'step':
- assert hasattr(cfg, 'lr_epoch')
- print('--lr_epoch: {}'.format(cfg.lr_epoch))
- lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=cfg.lr_epoch)
- elif cfg.lr_scheduler == 'cosine':
- pass
-
- if resume is not None and resume.lower() != "none":
- print('Load lr scheduler from the checkpoint: ', resume)
- checkpoint = torch.load(resume)
- # checkpoint state dict
- checkpoint_state_dict = checkpoint.pop("lr_scheduler")
- lr_scheduler.load_state_dict(checkpoint_state_dict)
- return lr_scheduler
|