| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- #!/usr/bin/env python3
- # -*- coding:utf-8 -*-
- # Copyright (c) Megvii, Inc. and its affiliates.
- # Thanks to YOLOX: https://github.com/Megvii-BaseDetection/YOLOX/blob/main/tools/export_onnx.py
- import argparse
- import os
- from loguru import logger
- import sys
- sys.path.append('..')
- import torch
- from torch import nn
- from utils.misc import SiLU
- from utils.misc import load_weight, replace_module
- from config import build_config
- from models import build_model
- def make_parser():
- parser = argparse.ArgumentParser("FreeYOLO ONNXRuntime")
- # basic
- parser.add_argument('--img_size', default=640, type=int,
- help='the max size of input image')
- parser.add_argument("--input", default="images", type=str,
- help="input node name of onnx model")
- parser.add_argument("--output", default="output", type=str,
- help="output node name of onnx model")
- parser.add_argument("--opset", default=13, type=int,
- help="onnx opset version")
- parser.add_argument("--batch-size", type=int, default=1,
- help="batch size")
- parser.add_argument("--dynamic", action="store_true", default=False,
- help="whether the input shape should be dynamic or not")
- parser.add_argument("--no-onnxsim", action="store_true", default=False,
- help="use onnxsim or not")
- parser.add_argument("-f", "--exp_file", default=None, type=str,
- help="experiment description file")
- parser.add_argument("-expn", "--experiment-name", type=str, default=None)
- parser.add_argument("opts", default=None, nargs=argparse.REMAINDER,
- help="Modify config options using the command-line")
- # model
- parser.add_argument('--model', default='yolov8_n', type=str,
- help='build FreeYOLOv2')
- parser.add_argument('--weight', default=None,
- type=str, help='Trained state_dict file path to open')
- parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
- help='fuse Conv & BN')
- return parser
- @logger.catch
- def main():
- args = make_parser().parse_args()
- logger.info("args value: {}".format(args))
- # Build config
- cfg = build_config(args)
- cfg.num_classes = 80 # for coco
- # Build model
- model = build_model(args, cfg, is_val=False)
- # Load trained weight
- model = load_weight(model, args.weight, args.fuse_conv_bn)
- model.eval()
- logger.info(" => loading checkpoint done.")
- dummy_input = torch.randn(args.batch_size, 3, args.img_size, args.img_size)
- # save onnx file
- save_path = os.path.join(os.path.split(args.weight)[0], str(args.opset))
- os.makedirs(save_path, exist_ok=True)
- output_name = os.path.join(args.model + '.onnx')
- output_path = os.path.join(save_path, output_name)
- torch.onnx._export(
- model,
- dummy_input,
- output_path,
- input_names=[args.input],
- output_names=[output_name],
- dynamic_axes={args.input: {0: 'batch'},
- output_name: {0: 'batch'}} if args.dynamic else None,
- opset_version=args.opset,
- )
- logger.info("generated onnx model named {}".format(output_path))
- if not args.no_onnxsim:
- import onnx
- from onnxsim import simplify
- input_shapes = {args.input: list(dummy_input.shape)} if args.dynamic else None
- # use onnxsimplify to reduce reduent model.
- onnx_model = onnx.load(output_path)
- model_simp, check = simplify(onnx_model,
- dynamic_input_shape=args.dynamic,
- input_shapes=input_shapes)
- assert check, "Simplified ONNX model could not be validated"
- # save onnxsim file
- save_path = os.path.join(save_path, 'onnxsim')
- os.makedirs(save_path, exist_ok=True)
- output_path = os.path.join(save_path, output_name)
- onnx.save(model_simp, output_path)
- logger.info("generated simplified onnx model named {}".format(output_path))
- if __name__ == "__main__":
- main()
|