| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- # yolo Config
- def build_yolov3_config(args):
- if args.model == 'yolov3_n':
- return Yolov3NConfig()
- elif args.model == 'yolov3_s':
- return Yolov3SConfig()
- elif args.model == 'yolov3_m':
- return Yolov3MConfig()
- elif args.model == 'yolov3_l':
- return Yolov3LConfig()
- elif args.model == 'yolov3_x':
- return Yolov3XConfig()
- else:
- raise NotImplementedError("No config for model: {}".format(args.model))
-
- # YOLOv3-Base config
- class Yolov3BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.width = 1.0
- self.depth = 1.0
- self.out_stride = [8, 16, 32]
- self.max_stride = 32
- self.num_levels = 3
- self.scale = "b"
- ## Backbone
- self.bk_act = 'silu'
- self.bk_norm = 'BN'
- self.bk_depthwise = False
- self.use_pretrained = True
- ## Neck
- self.neck_act = 'silu'
- self.neck_norm = 'BN'
- self.neck_depthwise = False
- self.neck_expand_ratio = 0.5
- self.spp_pooling_size = 5
- ## FPN
- self.fpn_act = 'silu'
- self.fpn_norm = 'BN'
- self.fpn_depthwise = False
- ## Head
- self.head_act = 'silu'
- self.head_norm = 'BN'
- self.head_depthwise = False
- self.head_dim = 256
- self.num_cls_head = 2
- self.num_reg_head = 2
- self.anchor_size = {0: [[10, 13], [16, 30], [33, 23]],
- 1: [[30, 61], [62, 45], [59, 119]],
- 2: [[116, 90], [156, 198], [373, 326]]}
- # ---------------- Post-process config ----------------
- ## Post process
- self.val_topk = 1000
- self.val_conf_thresh = 0.001
- self.val_nms_thresh = 0.7
- self.test_topk = 100
- self.test_conf_thresh = 0.3
- self.test_nms_thresh = 0.5
- # ---------------- Assignment config ----------------
- ## Matcher
- self.iou_thresh = 0.5
- ## Loss weight
- self.loss_obj = 1.0
- self.loss_cls = 1.0
- self.loss_box = 5.0
- # ---------------- ModelEMA config ----------------
- self.use_ema = True
- self.ema_decay = 0.9998
- self.ema_tau = 2000
- # ---------------- Optimizer config ----------------
- self.trainer = 'yolo'
- self.optimizer = 'adamw'
- self.per_image_lr = 0.001 / 64
- self.base_lr = None # base_lr = per_image_lr * batch_size
- self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
- self.momentum = 0.9
- self.weight_decay = 0.05
- self.clip_max_norm = 35.0
- self.warmup_bias_lr = 0.1
- self.warmup_momentum = 0.8
- # ---------------- Lr Scheduler config ----------------
- self.warmup_epoch = 3
- self.lr_scheduler = "linear"
- self.max_epoch = 300
- self.eval_epoch = 10
- self.no_aug_epoch = 20
- # ---------------- Data process config ----------------
- self.aug_type = 'yolo'
- self.box_format = 'xyxy'
- self.normalize_coords = False
- self.mosaic_prob = 1.0
- self.mixup_prob = 0.15
- self.copy_paste = 0.0 # approximated by the YOLOX's mixup
- self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
- ## Pixel mean & std
- self.pixel_mean = [0., 0., 0.]
- self.pixel_std = [255., 255., 255.]
- ## Transforms
- self.train_img_size = 640
- self.test_img_size = 640
- self.use_ablu = True
- self.affine_params = {
- 'degrees': 0.0,
- 'translate': 0.2,
- 'scale': [0.1, 2.0],
- 'shear': 0.0,
- 'perspective': 0.0,
- 'hsv_h': 0.015,
- 'hsv_s': 0.7,
- 'hsv_v': 0.4,
- }
- def print_config(self):
- config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
- for k, v in config_dict.items():
- print("{} : {}".format(k, v))
- # YOLOv3-N
- class Yolov3NConfig(Yolov3BaseConfig):
- def __init__(self) -> None:
- super().__init__()
- # ---------------- Model config ----------------
- self.width = 0.25
- self.depth = 0.34
- self.scale = "n"
- # ---------------- Data process config ----------------
- self.mosaic_prob = 1.0
- self.mixup_prob = 0.0
- self.copy_paste = 0.0
- # YOLOv3-S
- class Yolov3SConfig(Yolov3BaseConfig):
- def __init__(self) -> None:
- super().__init__()
- # ---------------- Model config ----------------
- self.width = 0.50
- self.depth = 0.34
- self.scale = "s"
- # ---------------- Data process config ----------------
- self.mosaic_prob = 1.0
- self.mixup_prob = 0.0
- self.copy_paste = 0.0
- # YOLOv3-M
- class Yolov3MConfig(Yolov3BaseConfig):
- def __init__(self) -> None:
- super().__init__()
- # ---------------- Model config ----------------
- self.width = 0.75
- self.depth = 0.67
- self.scale = "m"
- # ---------------- Data process config ----------------
- self.mosaic_prob = 1.0
- self.mixup_prob = 0.1
- self.copy_paste = 0.0
- # YOLOv3-L
- class Yolov3LConfig(Yolov3BaseConfig):
- def __init__(self) -> None:
- super().__init__()
- # ---------------- Model config ----------------
- self.width = 1.0
- self.depth = 1.0
- self.scale = "l"
- # ---------------- Data process config ----------------
- self.mosaic_prob = 1.0
- self.mixup_prob = 0.1
- self.copy_paste = 0.0
- # YOLOv3-X
- class Yolov3XConfig(Yolov3BaseConfig):
- def __init__(self) -> None:
- super().__init__()
- # ---------------- Model config ----------------
- self.width = 1.25
- self.depth = 1.34
- self.scale = "x"
- # ---------------- Data process config ----------------
- self.mosaic_prob = 1.0
- self.mixup_prob = 0.1
- self.copy_paste = 0.0
|