fcos_head.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186
  1. import torch
  2. import torch.nn as nn
  3. from ..basic.conv import BasicConv
  4. class Scale(nn.Module):
  5. """
  6. Multiply the output regression range by a learnable constant value
  7. """
  8. def __init__(self, init_value=1.0):
  9. """
  10. init_value : initial value for the scalar
  11. """
  12. super().__init__()
  13. self.scale = nn.Parameter(
  14. torch.tensor(init_value, dtype=torch.float32),
  15. requires_grad=True
  16. )
  17. def forward(self, x):
  18. """
  19. input -> scale * input
  20. """
  21. return x * self.scale
  22. class FcosHead(nn.Module):
  23. def __init__(self, cfg, in_dim, out_dim,):
  24. super().__init__()
  25. self.fmp_size = None
  26. # ------------------ Basic parameters -------------------
  27. self.cfg = cfg
  28. self.in_dim = in_dim
  29. self.stride = cfg.out_stride
  30. self.num_classes = cfg.num_classes
  31. self.num_cls_head = cfg.num_cls_head
  32. self.num_reg_head = cfg.num_reg_head
  33. self.act_type = cfg.head_act
  34. self.norm_type = cfg.head_norm
  35. # ------------------ Network parameters -------------------
  36. ## cls head
  37. cls_heads = []
  38. self.cls_head_dim = out_dim
  39. for i in range(self.num_cls_head):
  40. if i == 0:
  41. cls_heads.append(
  42. BasicConv(in_dim, self.cls_head_dim,
  43. kernel_size=3, padding=1, stride=1,
  44. act_type=self.act_type, norm_type=self.norm_type)
  45. )
  46. else:
  47. cls_heads.append(
  48. BasicConv(self.cls_head_dim, self.cls_head_dim,
  49. kernel_size=3, padding=1, stride=1,
  50. act_type=self.act_type, norm_type=self.norm_type)
  51. )
  52. ## reg head
  53. reg_heads = []
  54. self.reg_head_dim = out_dim
  55. for i in range(self.num_reg_head):
  56. if i == 0:
  57. reg_heads.append(
  58. BasicConv(in_dim, self.reg_head_dim,
  59. kernel_size=3, padding=1, stride=1,
  60. act_type=self.act_type, norm_type=self.norm_type)
  61. )
  62. else:
  63. reg_heads.append(
  64. BasicConv(self.reg_head_dim, self.reg_head_dim,
  65. kernel_size=3, padding=1, stride=1,
  66. act_type=self.act_type, norm_type=self.norm_type)
  67. )
  68. self.cls_heads = nn.Sequential(*cls_heads)
  69. self.reg_heads = nn.Sequential(*reg_heads)
  70. ## pred layers
  71. self.cls_pred = nn.Conv2d(self.cls_head_dim, cfg.num_classes, kernel_size=3, padding=1)
  72. self.reg_pred = nn.Conv2d(self.reg_head_dim, 4, kernel_size=3, padding=1)
  73. self.ctn_pred = nn.Conv2d(self.reg_head_dim, 1, kernel_size=3, padding=1)
  74. ## scale layers
  75. self.scales = nn.ModuleList(
  76. Scale() for _ in range(len(self.stride))
  77. )
  78. # init bias
  79. self._init_layers()
  80. def _init_layers(self):
  81. for module in [self.cls_heads, self.reg_heads, self.cls_pred, self.reg_pred, self.ctn_pred]:
  82. for layer in module.modules():
  83. if isinstance(layer, nn.Conv2d):
  84. torch.nn.init.normal_(layer.weight, mean=0, std=0.01)
  85. if layer.bias is not None:
  86. torch.nn.init.constant_(layer.bias, 0)
  87. if isinstance(layer, nn.GroupNorm):
  88. torch.nn.init.constant_(layer.weight, 1)
  89. if layer.bias is not None:
  90. torch.nn.init.constant_(layer.bias, 0)
  91. # init the bias of cls pred
  92. init_prob = 0.01
  93. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  94. torch.nn.init.constant_(self.cls_pred.bias, bias_value)
  95. def get_anchors(self, level, fmp_size):
  96. """
  97. fmp_size: (List) [H, W]
  98. """
  99. # generate grid cells
  100. fmp_h, fmp_w = fmp_size
  101. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  102. # [H, W, 2] -> [HW, 2]
  103. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
  104. anchors *= self.stride[level]
  105. return anchors
  106. def decode_boxes(self, pred_deltas, anchors):
  107. """
  108. pred_deltas: (List[Tensor]) [B, M, 4] or [M, 4] (l, t, r, b)
  109. anchors: (List[Tensor]) [1, M, 2] or [M, 2]
  110. """
  111. # x1 = x_anchor - l, x2 = x_anchor + r
  112. # y1 = y_anchor - t, y2 = y_anchor + b
  113. pred_x1y1 = anchors - pred_deltas[..., :2]
  114. pred_x2y2 = anchors + pred_deltas[..., 2:]
  115. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  116. return pred_box
  117. def forward(self, pyramid_feats, mask=None):
  118. all_masks = []
  119. all_anchors = []
  120. all_cls_preds = []
  121. all_reg_preds = []
  122. all_box_preds = []
  123. all_ctn_preds = []
  124. for level, feat in enumerate(pyramid_feats):
  125. # ------------------- Decoupled head -------------------
  126. cls_feat = self.cls_heads(feat)
  127. reg_feat = self.reg_heads(feat)
  128. # ------------------- Generate anchor box -------------------
  129. B, _, H, W = cls_feat.size()
  130. fmp_size = [H, W]
  131. anchors = self.get_anchors(level, fmp_size) # [M, 4]
  132. anchors = anchors.to(cls_feat.device)
  133. # ------------------- Predict -------------------
  134. cls_pred = self.cls_pred(cls_feat)
  135. reg_pred = self.reg_pred(reg_feat)
  136. ctn_pred = self.ctn_pred(reg_feat)
  137. # ------------------- Process preds -------------------
  138. ## [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  139. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  140. ctn_pred = ctn_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  141. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  142. reg_pred = nn.functional.relu(self.scales[level](reg_pred)) * self.stride[level]
  143. ## Decode bbox
  144. box_pred = self.decode_boxes(reg_pred, anchors)
  145. ## Adjust mask
  146. if mask is not None:
  147. # [B, H, W]
  148. mask_i = torch.nn.functional.interpolate(mask[None].float(), size=[H, W]).bool()[0]
  149. # [B, H, W] -> [B, M]
  150. mask_i = mask_i.flatten(1)
  151. all_masks.append(mask_i)
  152. all_anchors.append(anchors)
  153. all_cls_preds.append(cls_pred)
  154. all_reg_preds.append(reg_pred)
  155. all_box_preds.append(box_pred)
  156. all_ctn_preds.append(ctn_pred)
  157. outputs = {"pred_cls": all_cls_preds, # List [B, M, C]
  158. "pred_reg": all_reg_preds, # List [B, M, 4]
  159. "pred_box": all_box_preds, # List [B, M, 4]
  160. "pred_ctn": all_ctn_preds, # List [B, M, 1]
  161. "anchors": all_anchors, # List [B, M, 2]
  162. "strides": self.stride,
  163. "mask": all_masks} # List [B, M,]
  164. return outputs