| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from utils.box_ops import get_ious
- from utils.misc import sigmoid_focal_loss
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- from .matcher import FcosMatcher, SimOtaMatcher
- class SetCriterion(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- # ------------- Basic parameters -------------
- self.cfg = cfg
- self.num_classes = cfg.num_classes
- # ------------- Focal loss -------------
- self.alpha = cfg.focal_loss_alpha
- self.gamma = cfg.focal_loss_gamma
- # ------------- Loss weight -------------
- # ------------- Matcher & Loss weight -------------
- self.matcher_cfg = cfg.matcher_hpy
- if cfg.matcher == 'fcos_matcher':
- self.weight_dict = {'loss_cls': cfg.loss_cls_weight,
- 'loss_reg': cfg.loss_reg_weight,
- 'loss_ctn': cfg.loss_ctn_weight}
- self.matcher = FcosMatcher(cfg.num_classes,
- self.matcher_cfg['center_sampling_radius'],
- self.matcher_cfg['object_sizes_of_interest'],
- [1., 1., 1., 1.]
- )
- elif cfg.matcher == 'simota':
- self.weight_dict = {'loss_cls': cfg.loss_cls_weight,
- 'loss_reg': cfg.loss_reg_weight}
- self.matcher = SimOtaMatcher(cfg.num_classes,
- self.matcher_cfg['soft_center_radius'],
- self.matcher_cfg['topk_candidates'])
- else:
- raise NotImplementedError("Unknown matcher: {}.".format(cfg.matcher))
- def loss_labels(self, pred_cls, tgt_cls, num_boxes=1.0):
- """
- pred_cls: (Tensor) [N, C]
- tgt_cls: (Tensor) [N, C]
- """
- # cls loss: [V, C]
- loss_cls = sigmoid_focal_loss(pred_cls, tgt_cls, self.alpha, self.gamma)
- return loss_cls.sum() / num_boxes
- def loss_labels_qfl(self, pred_cls, target, beta=2.0, num_boxes=1.0):
- # Quality FocalLoss
- """
- pred_cls: (torch.Tensor): [N, C]。
- target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
- """
- label, score = target
- pred_sigmoid = pred_cls.sigmoid()
- scale_factor = pred_sigmoid
- zerolabel = scale_factor.new_zeros(pred_cls.shape)
- ce_loss = F.binary_cross_entropy_with_logits(
- pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
-
- bg_class_ind = pred_cls.shape[-1]
- pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
- if pos.shape[0] > 0:
- pos_label = label[pos].long()
- scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
- ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
- pred_cls[pos, pos_label], score[pos],
- reduction='none') * scale_factor.abs().pow(beta)
- return ce_loss.sum() / num_boxes
-
- def loss_bboxes_ltrb(self, pred_delta, tgt_delta, bbox_quality=None, num_boxes=1.0):
- """
- pred_box: (Tensor) [N, 4]
- tgt_box: (Tensor) [N, 4]
- """
- pred_delta = torch.cat((-pred_delta[..., :2], pred_delta[..., 2:]), dim=-1)
- tgt_delta = torch.cat((-tgt_delta[..., :2], tgt_delta[..., 2:]), dim=-1)
- eps = torch.finfo(torch.float32).eps
- pred_area = (pred_delta[..., 2] - pred_delta[..., 0]).clamp_(min=0) \
- * (pred_delta[..., 3] - pred_delta[..., 1]).clamp_(min=0)
- tgt_area = (tgt_delta[..., 2] - tgt_delta[..., 0]).clamp_(min=0) \
- * (tgt_delta[..., 3] - tgt_delta[..., 1]).clamp_(min=0)
- w_intersect = (torch.min(pred_delta[..., 2], tgt_delta[..., 2])
- - torch.max(pred_delta[..., 0], tgt_delta[..., 0])).clamp_(min=0)
- h_intersect = (torch.min(pred_delta[..., 3], tgt_delta[..., 3])
- - torch.max(pred_delta[..., 1], tgt_delta[..., 1])).clamp_(min=0)
- area_intersect = w_intersect * h_intersect
- area_union = tgt_area + pred_area - area_intersect
- ious = area_intersect / area_union.clamp(min=eps)
- # giou
- g_w_intersect = torch.max(pred_delta[..., 2], tgt_delta[..., 2]) \
- - torch.min(pred_delta[..., 0], tgt_delta[..., 0])
- g_h_intersect = torch.max(pred_delta[..., 3], tgt_delta[..., 3]) \
- - torch.min(pred_delta[..., 1], tgt_delta[..., 1])
- ac_uion = g_w_intersect * g_h_intersect
- gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps)
- loss_box = 1 - gious
- if bbox_quality is not None:
- loss_box = loss_box * bbox_quality.view(loss_box.size())
- return loss_box.sum() / num_boxes
- def loss_bboxes_xyxy(self, pred_box, gt_box, num_boxes=1.0):
- ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
- loss_box = 1.0 - ious
- return loss_box.sum() / num_boxes
-
- def fcos_loss(self, outputs, targets):
- """
- outputs['pred_cls']: (Tensor) [B, M, C]
- outputs['pred_reg']: (Tensor) [B, M, 4]
- outputs['pred_ctn']: (Tensor) [B, M, 1]
- outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- # -------------------- Pre-process --------------------
- device = outputs['pred_cls'][0].device
- fpn_strides = outputs['strides']
- anchors = outputs['anchors']
- pred_cls = torch.cat(outputs['pred_cls'], dim=1).view(-1, self.num_classes)
- pred_delta = torch.cat(outputs['pred_reg'], dim=1).view(-1, 4)
- pred_ctn = torch.cat(outputs['pred_ctn'], dim=1).view(-1, 1)
- masks = ~torch.cat(outputs['mask'], dim=1).view(-1)
- # -------------------- Label Assignment --------------------
- gt_classes, gt_deltas, gt_centerness = self.matcher(fpn_strides, anchors, targets)
- gt_classes = gt_classes.flatten().to(device)
- gt_deltas = gt_deltas.view(-1, 4).to(device)
- gt_centerness = gt_centerness.view(-1, 1).to(device)
- foreground_idxs = (gt_classes >= 0) & (gt_classes != self.num_classes)
- num_foreground = foreground_idxs.sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_foreground)
- num_foreground = torch.clamp(num_foreground / get_world_size(), min=1).item()
- num_foreground_centerness = gt_centerness[foreground_idxs].sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_foreground_centerness)
- num_targets = torch.clamp(num_foreground_centerness / get_world_size(), min=1).item()
- # -------------------- classification loss --------------------
- gt_classes_target = torch.zeros_like(pred_cls)
- gt_classes_target[foreground_idxs, gt_classes[foreground_idxs]] = 1
- valid_idxs = (gt_classes >= 0) & masks
- loss_labels = self.loss_labels(
- pred_cls[valid_idxs], gt_classes_target[valid_idxs], num_foreground)
- # -------------------- regression loss --------------------
- loss_bboxes = self.loss_bboxes_ltrb(
- pred_delta[foreground_idxs], gt_deltas[foreground_idxs], gt_centerness[foreground_idxs], num_targets)
- # -------------------- centerness loss --------------------
- loss_centerness = F.binary_cross_entropy_with_logits(
- pred_ctn[foreground_idxs], gt_centerness[foreground_idxs], reduction='none')
- loss_centerness = loss_centerness.sum() / num_foreground
- loss_dict = dict(
- loss_cls = loss_labels,
- loss_reg = loss_bboxes,
- loss_ctn = loss_centerness,
- )
- return loss_dict
-
- def ota_loss(self, outputs, targets):
- """
- outputs['pred_cls']: (Tensor) [B, M, C]
- outputs['pred_reg']: (Tensor) [B, M, 4]
- outputs['pred_box']: (Tensor) [B, M, 4]
- outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- # -------------------- Pre-process --------------------
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- fpn_strides = outputs['strides']
- anchors = outputs['anchors']
- # preds: [B, M, C]
- # preds: [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
- masks = ~torch.cat(outputs['mask'], dim=1).view(-1)
- # -------------------- Label Assignment --------------------
- cls_targets = []
- box_targets = []
- assign_metrics = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
- tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
- # refine target
- tgt_boxes_wh = tgt_bboxes[..., 2:] - tgt_bboxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= 8)
- tgt_bboxes = tgt_bboxes[keep]
- tgt_labels = tgt_labels[keep]
- # label assignment
- assigned_result = self.matcher(fpn_strides=fpn_strides,
- anchors=anchors,
- pred_cls=cls_preds[batch_idx].detach(),
- pred_box=box_preds[batch_idx].detach(),
- gt_labels=tgt_labels,
- gt_bboxes=tgt_bboxes
- )
- cls_targets.append(assigned_result['assigned_labels'])
- box_targets.append(assigned_result['assigned_bboxes'])
- assign_metrics.append(assigned_result['assign_metrics'])
- # List[B, M, C] -> Tensor[BM, C]
- cls_targets = torch.cat(cls_targets, dim=0)
- box_targets = torch.cat(box_targets, dim=0)
- assign_metrics = torch.cat(assign_metrics, dim=0)
- valid_idxs = (cls_targets >= 0) & masks
- foreground_idxs = (cls_targets >= 0) & (cls_targets != self.num_classes)
- num_fgs = assign_metrics.sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = torch.clamp(num_fgs / get_world_size(), min=1).item()
- # -------------------- classification loss --------------------
- cls_preds = cls_preds.view(-1, self.num_classes)[valid_idxs]
- qfl_targets = (cls_targets[valid_idxs], assign_metrics[valid_idxs])
- loss_labels = self.loss_labels_qfl(cls_preds, qfl_targets, 2.0, num_fgs)
- # -------------------- regression loss --------------------
- box_preds_pos = box_preds.view(-1, 4)[foreground_idxs]
- box_targets_pos = box_targets[foreground_idxs]
- loss_bboxes = self.loss_bboxes_xyxy(box_preds_pos, box_targets_pos, num_fgs)
- loss_dict = dict(
- loss_cls = loss_labels,
- loss_reg = loss_bboxes,
- )
- return loss_dict
-
- def forward(self, outputs, targets):
- """
- outputs['pred_cls']: (Tensor) [B, M, C]
- outputs['pred_reg']: (Tensor) [B, M, 4]
- outputs['pred_ctn']: (Tensor) [B, M, 1]
- outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- if self.cfg.matcher == "fcos_matcher":
- return self.fcos_loss(outputs, targets)
- elif self.cfg.matcher == "simota":
- return self.ota_loss(outputs, targets)
- else:
- raise NotImplementedError
- if __name__ == "__main__":
- pass
|