loss.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import Yolov3Matcher
  6. class SetCriterion(object):
  7. def __init__(self, cfg):
  8. self.cfg = cfg
  9. self.num_classes = cfg.num_classes
  10. self.loss_obj_weight = cfg.loss_obj
  11. self.loss_cls_weight = cfg.loss_cls
  12. self.loss_box_weight = cfg.loss_box
  13. # matcher
  14. anchor_size = cfg.anchor_size[0] + cfg.anchor_size[1] + cfg.anchor_size[2]
  15. self.matcher = Yolov3Matcher(cfg.num_classes, 3, anchor_size, cfg.iou_thresh)
  16. def loss_objectness(self, pred_obj, gt_obj):
  17. loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none')
  18. return loss_obj
  19. def loss_classes(self, pred_cls, gt_label):
  20. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none')
  21. return loss_cls
  22. def loss_bboxes(self, pred_box, gt_box):
  23. # regression loss
  24. ious = get_ious(pred_box,
  25. gt_box,
  26. box_mode="xyxy",
  27. iou_type='giou')
  28. loss_box = 1.0 - ious
  29. return loss_box, ious
  30. def __call__(self, outputs, targets):
  31. device = outputs['pred_cls'][0].device
  32. fpn_strides = outputs['strides']
  33. fmp_sizes = outputs['fmp_sizes']
  34. (
  35. gt_objectness,
  36. gt_classes,
  37. gt_bboxes,
  38. ) = self.matcher(fmp_sizes=fmp_sizes,
  39. fpn_strides=fpn_strides,
  40. targets=targets)
  41. # List[B, M, C] -> [B, M, C] -> [BM, C]
  42. pred_obj = torch.cat(outputs['pred_obj'], dim=1).view(-1) # [BM,]
  43. pred_cls = torch.cat(outputs['pred_cls'], dim=1).view(-1, self.num_classes) # [BM, C]
  44. pred_box = torch.cat(outputs['pred_box'], dim=1).view(-1, 4) # [BM, 4]
  45. gt_objectness = gt_objectness.view(-1).to(device).float() # [BM,]
  46. gt_classes = gt_classes.view(-1, self.num_classes).to(device).float() # [BM, C]
  47. gt_bboxes = gt_bboxes.view(-1, 4).to(device).float() # [BM, 4]
  48. pos_masks = (gt_objectness > 0)
  49. num_fgs = pos_masks.sum()
  50. if is_dist_avail_and_initialized():
  51. torch.distributed.all_reduce(num_fgs)
  52. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  53. # box loss
  54. pred_box_pos = pred_box[pos_masks]
  55. gt_bboxes_pos = gt_bboxes[pos_masks]
  56. loss_box, ious = self.loss_bboxes(pred_box_pos, gt_bboxes_pos)
  57. loss_box = loss_box.sum() / num_fgs
  58. # cls loss
  59. pred_cls_pos = pred_cls[pos_masks]
  60. gt_classes_pos = gt_classes[pos_masks] * ious.unsqueeze(-1).clamp(0.)
  61. loss_cls = self.loss_classes(pred_cls_pos, gt_classes_pos)
  62. loss_cls = loss_cls.sum() / num_fgs
  63. # obj loss
  64. loss_obj = self.loss_objectness(pred_obj, gt_objectness)
  65. loss_obj = loss_obj.sum() / num_fgs
  66. # total loss
  67. losses = self.loss_obj_weight * loss_obj + \
  68. self.loss_cls_weight * loss_cls + \
  69. self.loss_box_weight * loss_box
  70. loss_dict = dict(
  71. loss_obj = loss_obj,
  72. loss_cls = loss_cls,
  73. loss_box = loss_box,
  74. losses = losses
  75. )
  76. return loss_dict
  77. if __name__ == "__main__":
  78. pass