yolov8_pred.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. # -------------------- Detection Pred Layer --------------------
  6. ## Single-level pred layer
  7. class DetPredLayer(nn.Module):
  8. def __init__(self,
  9. cls_dim :int = 256,
  10. reg_dim :int = 256,
  11. stride :int = 32,
  12. reg_max :int = 16,
  13. num_classes :int = 80,
  14. num_coords :int = 4):
  15. super().__init__()
  16. # --------- Basic Parameters ----------
  17. self.stride = stride
  18. self.cls_dim = cls_dim
  19. self.reg_dim = reg_dim
  20. self.reg_max = reg_max
  21. self.num_classes = num_classes
  22. self.num_coords = num_coords
  23. # --------- Network Parameters ----------
  24. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  25. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  26. self.init_bias()
  27. def init_bias(self):
  28. # cls pred bias
  29. b = self.cls_pred.bias.view(1, -1)
  30. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  31. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  32. # reg pred bias
  33. b = self.reg_pred.bias.view(-1, )
  34. b.data.fill_(1.0)
  35. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  36. w = self.reg_pred.weight
  37. w.data.fill_(0.)
  38. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  39. def generate_anchors(self, fmp_size):
  40. """
  41. fmp_size: (List) [H, W]
  42. """
  43. # generate grid cells
  44. fmp_h, fmp_w = fmp_size
  45. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  46. # [H, W, 2] -> [HW, 2]
  47. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  48. anchors += 0.5 # add center offset
  49. anchors *= self.stride
  50. return anchors
  51. def forward(self, cls_feat, reg_feat):
  52. # pred
  53. cls_pred = self.cls_pred(cls_feat)
  54. reg_pred = self.reg_pred(reg_feat)
  55. # generate anchor boxes: [M, 4]
  56. B, _, H, W = cls_pred.size()
  57. fmp_size = [H, W]
  58. anchors = self.generate_anchors(fmp_size)
  59. anchors = anchors.to(cls_pred.device)
  60. # stride tensor: [M, 1]
  61. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  62. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  63. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  64. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  65. # output dict
  66. outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
  67. "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
  68. "anchors": anchors, # List(Tensor) [M, 2]
  69. "strides": self.stride, # List(Int) = [8, 16, 32]
  70. "stride_tensor": stride_tensor # List(Tensor) [M, 1]
  71. }
  72. return outputs
  73. ## Multi-level pred layer
  74. class Yolov8DetPredLayer(nn.Module):
  75. def __init__(self,
  76. cfg,
  77. cls_dim,
  78. reg_dim,
  79. ):
  80. super().__init__()
  81. # --------- Basic Parameters ----------
  82. self.cfg = cfg
  83. self.cls_dim = cls_dim
  84. self.reg_dim = reg_dim
  85. # ----------- Network Parameters -----------
  86. ## pred layers
  87. self.multi_level_preds = nn.ModuleList(
  88. [DetPredLayer(cls_dim = cls_dim,
  89. reg_dim = reg_dim,
  90. stride = cfg.out_stride[level],
  91. reg_max = cfg.reg_max,
  92. num_classes = cfg.num_classes,
  93. num_coords = 4 * cfg.reg_max)
  94. for level in range(cfg.num_levels)
  95. ])
  96. ## proj conv
  97. proj_init = torch.arange(cfg.reg_max, dtype=torch.float)
  98. self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
  99. self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False)
  100. def forward(self, cls_feats, reg_feats):
  101. all_anchors = []
  102. all_strides = []
  103. all_cls_preds = []
  104. all_reg_preds = []
  105. all_box_preds = []
  106. for level in range(self.cfg.num_levels):
  107. # -------------- Single-level prediction --------------
  108. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  109. # -------------- Decode bbox --------------
  110. B, M = outputs["pred_reg"].shape[:2]
  111. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
  112. delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.cfg.reg_max])
  113. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  114. delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
  115. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  116. delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
  117. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  118. delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  119. ## tlbr -> xyxy
  120. x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.cfg.out_stride[level]
  121. x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.cfg.out_stride[level]
  122. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  123. # collect results
  124. all_cls_preds.append(outputs["pred_cls"])
  125. all_reg_preds.append(outputs["pred_reg"])
  126. all_box_preds.append(box_pred)
  127. all_anchors.append(outputs["anchors"])
  128. all_strides.append(outputs["stride_tensor"])
  129. # output dict
  130. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  131. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  132. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  133. "anchors": all_anchors, # List(Tensor) [M, 2]
  134. "stride_tensor": all_strides, # List(Tensor) [M, 1]
  135. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  136. }
  137. return outputs