|
|
1 rok temu | |
|---|---|---|
| .. | ||
| README.md | 1 rok temu | |
| build.py | 1 rok temu | |
| loss.py | 1 rok temu | |
| matcher.py | 1 rok temu | |
| yolov8_backbone.py | 1 rok temu | |
| yolov8_basic.py | 1 rok temu | |
| yolov8_e2e.py | 1 rok temu | |
| yolov8_head.py | 1 rok temu | |
| yolov8_neck.py | 1 rok temu | |
| yolov8_pafpn.py | 1 rok temu | |
| yolov8_pred.py | 1 rok temu | |
Inspired by YOLOv10, I deploy two parallel detection heads, one using one-to-many assinger (o2m head) and the other using one-to-one assinger (o2o head). To avoid conflicts between the gradients returned by o2o head and o2m head, we truncate the gradients returned from o2o head to the backbone and neck, and only allow the gradients returned from o2m head to update the backbone and neck. This operation is consistent with the practice of YOLOv10. For evaluation, we remove the o2m head and only use o2o head without NMS.
However, I have no GPU to train YOLOv8-E2E.
| Model | Batch | Scale | APval 0.5 | Weight | Logs | |||
|---|---|---|---|---|---|---|---|---|
| YOLOv8-E2E-S | 1xb16 | 640 |
| Model | Batch | Scale | APval 0.5:0.95 | APval 0.5 | FLOPs (G) | Params (M) | Weight | Logs |
|---|---|---|---|---|---|---|---|---|
| YOLOv8-E2E-S | 1xb16 | 640 | 26.9 | 8.9 |