| 12345678910111213141516171819202122232425262728293031323334353637383940 |
- import torch
- import torch.nn as nn
- class FrozenBatchNorm2d(torch.nn.Module):
- """
- BatchNorm2d where the batch statistics and the affine parameters are fixed.
- Copy-paste from torchvision.misc.ops with added eps before rqsrt,
- without which any other models than torchvision.models.resnet[18,34,50,101]
- produce nans.
- """
- def __init__(self, n):
- super(FrozenBatchNorm2d, self).__init__()
- self.register_buffer("weight", torch.ones(n))
- self.register_buffer("bias", torch.zeros(n))
- self.register_buffer("running_mean", torch.zeros(n))
- self.register_buffer("running_var", torch.ones(n))
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- num_batches_tracked_key = prefix + 'num_batches_tracked'
- if num_batches_tracked_key in state_dict:
- del state_dict[num_batches_tracked_key]
- super(FrozenBatchNorm2d, self)._load_from_state_dict(
- state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs)
- def forward(self, x):
- # move reshapes to the beginning
- # to make it fuser-friendly
- w = self.weight.reshape(1, -1, 1, 1)
- b = self.bias.reshape(1, -1, 1, 1)
- rv = self.running_var.reshape(1, -1, 1, 1)
- rm = self.running_mean.reshape(1, -1, 1, 1)
- eps = 1e-5
- scale = w * (rv + eps).rsqrt()
- bias = b - rm * scale
- return x * scale + bias
|