| Model |
Batch |
Scale |
APval 0.5:0.95
| APval 0.5
| FLOPs (G)
| Params (M)
| ckpt |
Logs |
| RT-DETR-R18 |
4xb4 |
640 |
45.5 |
63.5 |
66.8 |
21.0 |
ckpt |
log |
| RT-DETR-R50 |
4xb4 |
640 |
50.6 |
69.4 |
112.1 |
36.7 |
ckpt |
log |
Train RT-DETR
Single GPU
Taking training RT-DETR-S on COCO as the example,
python train.py --cuda -d coco --root path/to/coco -m rtdetr_r18 -bs 16 --fp16
Multi GPU
Taking training RT-DETR on COCO as the example,
python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root /data/datasets/ -m rtdetr_r18 -bs 16 --fp16 --sybn
Test RT-DETR
Taking testing RT-DETR on COCO-val as the example,
python test.py --cuda -d coco --root path/to/coco -m rtdetr_r18 --weight path/to/rtdetr_r18.pth --show
Evaluate RT-DETR
Taking evaluating RT-DETR on COCO-val as the example,
python train.py --cuda -d coco --root path/to/coco -m rtdetr_r18 -bs 16 --fp16 --resume path/to/rtdetr_r18.pth --eval_first
Demo
Detect with Image
python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m rtdetr_r18 --weight path/to/weight --show
Detect with Video
python demo.py --mode video --path_to_vid path/to/video --cuda -m rtdetr_r18 --weight path/to/weight --show
Detect with Camera
python demo.py --mode camera --cuda -m rtdetr_r18 --weight path/to/weight --show